首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
基于密度泛函理论,采用第一性原理赝势平面波方法计算了Co、Cr单掺杂以及Co-Cr共掺杂金红石型TiO2的能带结构、态密度和光学性质.计算结果表明:纯金红石的禁带宽度为3.0eV,Co掺杂金红石型TiO2的带隙为1.21eV,导带顶和价带底都位于G点处,仍为直接带隙,在价带与导带之间出现了由Co 3d和Ti 3d轨道杂化形成的杂质能级;Cr掺杂金红石型TiO2的直接带隙为0.85eV,在价带与导带之间的杂质能级由Cr 3d和Ti 3d轨道杂化轨道构成,导带和价带都向低能级方向移动;Co-Cr共掺杂,由于电子的强烈杂化,使O-2p态和Ti-3d态向Co-3d和Cr-3d态移动,使价带顶能级向高能级移动而导带底能级向低能方向移动,极大地减小了禁带的宽度,也是共掺杂改性的离子选择依据.掺杂金红石型TiO2的介电峰、折射率和吸收系数峰都向低能方向移动;在E2.029eV的范围内,纯金红石的ε2、k和吸收系数为零,掺杂后的跃迁强度都大于未掺杂时的跃迁强度,Co-Cr共掺杂的跃迁强度大于Co掺杂及Cr掺杂,说明Co、Cr共掺杂更能增强电子在低能端的光学跃迁,具有更佳的可见光催化性能.  相似文献   

2.
杨振辉  王菊  刘涌  王慷慨  苏婷  郭春林  宋晨路  韩高荣 《物理学报》2014,63(15):157101-157101
采用基于密度泛函理论第一性原理GGA和GGA+U相结合的方法研究了不同掺杂浓度下锐钛矿相和金红石相Nb:TiO2的晶体结构、电子结构以及稳定性.结果表明:锐钛矿相Nb:TiO2能带结构与简并半导体类似,呈类金属导电机理.金红石相Nb:TiO2呈半导体导电机理.Nb原子比Ti原子电离产生出更多的电子.锐钛矿相Nb:TiO2中Nb原子的电离率比金红石相Nb:TiO2的大.以上结果说明锐钛矿相Nb:TiO2比金红石相Nb:TiO2更适宜用作TCO材料;掺杂浓度对其杂质能级,费米能级和有效质量都有影响.Nb原子掺杂浓度越高,材料电离率呈降低趋势;形成能计算结果显示:在富钛条件下不利于Nb原子的掺杂,而在富氧条件下有利于Nb原子的掺杂.对于金红石相和锐钛矿相Nb:TiO2,不论是在贫氧或富氧条件下,随着Nb原子掺杂浓度的提高,形成能均增大.  相似文献   

3.
采用化学液相沉积法制备了系列未掺杂和掺杂不同金属离子的TiO2白云母纳米复合材料.利用扫描电子显微镜(SEM),x射线衍射(XRD)对其TiO2薄膜的TiO2颗粒形态和相组成进行了详细研究.结果表明,TiO2颗粒在15—50nm之间;除球形颗粒外,掺杂Mn2+,Zn2+的样品中还出现有金红石柱状颗粒.TiO2薄膜中相组成以锐钛矿、金红石共存为特征;掺杂金属离子对TiO2相组成的影响取决于金属离子的离子半径、电荷及配位体特征. 关键词: 金属离子掺杂 TiO2 颗粒形态 相组成  相似文献   

4.
萤石结构TiO2的电子结构和光学性质   总被引:2,自引:0,他引:2       下载免费PDF全文
利用第一性原理计算了立方相萤石TiO2的晶胞参数,能带结构和电子态密度.结果显示萤石TiO2属于间接带隙半导体材料,其间接禁带宽度(Γ→X)Eg为2.07 eV,比常见的金红石和锐钛矿TiO2的禁带宽度窄.为了更清楚地了解萤石的光学性质,利用Kramers-Kronig色散关系,分别对萤石和金红石TiO2的复介电常数、吸收率等参数进行了计算,并将二者结果做了比较.其中萤石TiO2的静介电常数为8.31.金红石TiO2的静介电常数表现为各向异性ε1xy(0)=6.01和ε1z(0)=7.07,该计算结果与实验值一致.吸收光谱的对比结果显示萤石结构在51nm和153 nm处增加了新的吸收峰,并且吸收光谱范围已扩大到了可见光区.  相似文献   

5.
本文运用第一性原理GGA+U方法计算了C元素单/双掺杂金红石型TiO2的电子结构、磁性和光学性质. 结果表明, C掺杂体系的晶格发生畸变和体积相应增大。单掺杂体系的磁矩为1.3 μB, 磁矩主要归因于杂质态引起的自旋电荷密度不平衡, 杂质态主要由C-2p、O-2p 和Ti-3d的态电子构成, 且它们之间存在明显的杂化现象. 双掺杂体系中C原子之间的反铁磁性耦合比铁磁性耦合更加稳定, 但其磁矩为零. 另外, 随着掺杂浓度的增大, 掺杂体系的带隙由2.58 eV增大到3.4 eV, 且在可见光区域的光吸收效率明显增大. 这表明带隙的减小可能不是光谱吸收增强的主要因素, 而带隙中的杂质态极大地影响了光谱吸收效率.  相似文献   

6.
金红石型TiO2点缺陷性质的第一性原理研究   总被引:7,自引:5,他引:2  
本文运用基于局域密度泛函和赝势的第一性原理方法研究了金红石相TiO2点缺陷的电子性质,结果表明氧空位缺陷使晶体的费米能量升高,在能隙中没有产生杂质能级.钛空位缺陷使晶体的费米能量降低,并在价带顶部产生了一个杂质能级,与价带顶能量相差约0.4 eV.本文还计算了金红石相TiO2在具有氧空位和钛空位点缺陷情况下的键长变化、态密度和电荷布居状况.  相似文献   

7.
冯庆  王寅  王渭华  岳远霞 《计算物理》2012,29(4):593-600
采用基于第一性原理的平面波超软赝势方法研究N和S单掺杂以及N和S共掺杂金红石相TiO2的能带结构,态密度和光学性质.结果表明:N掺杂导致禁带宽度减小为1.43 eV,并且在价带上方形成了一条杂质能带;S掺杂导致费米能级上移靠近导带,直接带隙减小为0.32 eV;N和S共掺杂导致能带结构中出现了两条杂质能带,靠近导带的一条杂质能级距离导带底约0.35 eV,靠近价带的一条杂质能级距离价带顶约0.85 eV,杂质能级主要由N原子的2p轨道和S原子的3p轨道组成.N和S掺杂后不但使TiO2的吸收带产生红移,而且在可见光区具有较大的吸收系数,光催化活性增强.  相似文献   

8.
为了研究金属掺杂团簇时带隙的变化趋势,本文用Cr, Mo, V, Nb四种元素掺杂 (TiO2)3团簇,并用密度泛函理论下的广义梯度近似(GGA)方法计算。不同掺杂位置的结果表明最好的掺杂位置是3-配位的钛位置。所有掺杂后(TiO2)3团簇的HOMO-LUMO带隙都要比未掺杂时要小,对应高能区态密度峰值左移0.1eV;HOMO的电子云分布主要占据了氧原子的位置,当掺杂团簇被激发时,电子从末端氧原子位置跃迁到掺杂原子。此外,我们进一步的计算表明Cr和Mo是降低(TiO2)3团簇带隙较好的掺杂元素。为了进一步的研究掺杂(TiO2)3团簇的性质以及它在光催化,清洁能源等方面的应用,还需要我们进行实验和理论相结合的研究。  相似文献   

9.
为了研究金属掺杂团簇时带隙的变化趋势,本文用Cr, Mo, V, Nb四种元素掺杂 (TiO2)3团簇,并用密度泛函理论下的广义梯度近似(GGA)方法计算。不同掺杂位置的结果表明最好的掺杂位置是3-配位的钛位置。所有掺杂后(TiO2)3团簇的HOMO-LUMO带隙都要比未掺杂时要小,对应高能区态密度峰值左移0.1eV;HOMO的电子云分布主要占据了氧原子的位置,当掺杂团簇被激发时,电子从末端氧原子位置跃迁到掺杂原子。此外,我们进一步的计算表明Cr和Mo是降低(TiO2)3团簇带隙较好的掺杂元素。为了进一步的研究掺杂(TiO2)3团簇的性质以及它在光催化,清洁能源等方面的应用,还需要我们进行实验和理论相结合的研究。  相似文献   

10.
纳米TiO_2薄膜的结构与光电特性   总被引:3,自引:0,他引:3  
用射频磁控溅射方法制备出厚度大约15-225nm的TiO2薄膜。Raman光谱测量显示,TiO2薄膜主要是金红石结构(含少量板钛矿相)。紫外可见光吸收光谱表明,在纳米厚度(100nm)范围内,TiO2薄膜的带隙宽度随着薄膜厚度的变化而变化。室温下测量TiO2薄膜的电阻率发现,随着厚度的增加TiO2薄膜的电阻率先后在导体、半导体和绝缘体范围变化。  相似文献   

11.
采用基于第一性原理的平面波超软赝势方法计算研究了双N原子掺入金红石相TiO_2的几何结构和电子结构.通过比较三种可能的掺杂方式的总能发现,两个氮原子占据两个相邻的B原子位置时具有最稳定的结构.电子结构分析表明,双N原子掺杂TiO_2出现了杂质能级,三种结构的能带间隙均减小,其中杂质原子最近邻占位时,带隙最小,随着两个杂质原子的距离增大,带隙会逐渐变大.  相似文献   

12.
采用基于密度泛函理论(density functional theory,DFT)的Castep(MS 5.5)软件包进行计算,计算方法为广义梯度近似(generalized gradient approximation,GGA)下的Predew-Burke-Ernzerhof交换关联泛函和投影缀加平面波方法,构建2×2×1锐钛矿相二氧化钛单掺杂Ni、V、Zr、W等金属原子及N、P、S等非金属原子的晶胞模型,对掺杂锐钛矿相二氧化钛的能带结构、态密度和吸收光谱进行了计算.计算结果表明:Ni、V、Zr、W、P、N、S单掺杂二氧化钛的带隙宽度,除了W元素,其它掺杂元素都使带隙变窄,吸收光谱发生一定程度的红移.同时计算结果也表明,在金属和非金属共掺杂的作用下,由于共掺杂元素的引入,均使得带隙降低,其中P-V和S-Ni共掺杂的带隙最小,光学性质显示S-Ni共掺杂吸收边带最宽,对可见光的利用率最高,理论上S-Ni共掺杂锐钛矿二氧化钛具有良好的光致阴极保护效果.  相似文献   

13.
采用基于密度泛函理论(DFT)的第一性原理中的平面波超软赝势(PWPP)方法对理想TiO_2,N单掺杂,Pt单掺杂和Pt-N共掺杂锐钛矿相TiO_2的电子结构进行计算,分析N单掺杂、Pt单掺杂及Pt-N共掺杂对锐钛矿相TiO_2的晶体结构、能带和态密度的影响.计算结果表明:掺杂后TiO_2的晶格发生畸变,原子间键长的变化使晶格发生膨胀,Pt单掺杂、N单掺杂TiO_2禁带宽度变窄,Pt-N共掺杂TiO_2分别在价带顶和导带底产生杂质能级,且禁带宽度缩小范围大,表明Pt-N共掺杂能进一步提高锐钛矿TiO_2催化性能.  相似文献   

14.
采用密度泛函理论对M-(Sm、Pr、Ga)掺杂锐钛矿型TiO2能带和电子性质进行了系统的理论研究. 计算结果表明,通过Sm和Pr的掺杂可以降低TiO2的带隙进而使其产生吸收边红移,通过Ga的掺杂能使带隙稍增加. 这主要是由于Sm和Pr的掺杂使Sm和Pr上的4f层电子与原子相邻O原子上的2p层电子相互作用,形成的杂质能级影响了Ti-O的能带结构,从而降低带隙,提高TiO2的可见光吸收性能.  相似文献   

15.
本研究采用基于密度泛函理论的第一性原理方法,对纯锐钛矿TiO2及贵金属(Ru、Pd、Pt、Ag和Au)掺杂锐钛矿TiO2的晶格结构、能带结构、电子态密度及光学性质进行了计算。结果表明:贵金属掺杂后TiO2的晶格体积都出现了不同程度的增大;Pd和Pt掺杂后TiO2体系的禁带宽度减小,Ru、Ag和Au掺杂后体系表现出了一定的金属属性,五种贵金属掺杂TiO2后吸收光谱都有红移的趋势。掺杂形成能计算表明,除Ru金属外,富氧条件下掺杂更容易实现。  相似文献   

16.
采用基于密度泛函的第一性原理研究了稀土元素La、Ce共掺杂锐钛矿相TiO2的缺陷形成能,缺陷电荷转变能级以及电子结构.研究发现,富氧状态下La、Ce掺杂以及La-Ce共掺的缺陷形成能均为负值,而贫氧状态下La、Ce掺杂形成能为正,表明La、Ce的掺杂TiO2只能在氧气氛制备条件下进行;替代Ti掺杂缺陷电荷转变能级计算结果表明:0/1-的缺陷电荷转变能级分别位于VBM上面0.522 eV及2.440 eV处;与纯锐钛矿相TiO2相比,La、Ce单掺杂以及La-Ce共掺杂均能减小TiO2的禁带宽度,但共掺杂体系的禁带宽度更窄,因此共掺杂体系将更有利于提高TiO2对可见光的响应能力和光催化性能.  相似文献   

17.
本文采用了基于密度泛函理论的第一性原理平面波超软赝势法对金红石相TiO_2进行了计算,其中内容包括未掺杂与单掺杂Al、单掺杂N以及共掺杂Al-N这四种不同情况下TiO_2的能带结构与态密度和光吸收系数的研究.计算结果表明:单掺杂Al和N时,均不同程度地改变了其能带结构,光吸收能力均有提高但效果不佳.在共掺杂Al-N时,TiO_2晶格常数产生了改变,并出现了新的杂质能级.由于杂质能级存在于TiO_2禁带范围内,减小了电子跃迁至导带所需能量,从而提高了其光吸收能力,其效果相对于单掺杂来说更有明显提高.  相似文献   

18.
采用基于密度泛函理论的第一性原理方法计算了存在Ga空位缺陷和掺杂B原子的二维GaAs的能带结构、态密度和光学性质.计算结果表明空位缺陷二维GaAs显示出金属特性,B原子的引入使体系变为间接带隙半导体,禁带宽度为0.35 eV.态密度计算发现体系低能带主要由Ga的s态、p态、d态和As的s态、p态构成;高能带主要由Ga和As的s态、p态构成.掺杂B原子与存在空位缺陷的二维GaAs相比,静态介电常数相对较低,变为8.42,且易于吸收紫外光,在3.90~8.63 eV能量范围具有金属反射特性,反射率达到52%.  相似文献   

19.
近年来,Fe和N掺杂锐钛矿相TiO2半导体在实验中发现许多优异性能,本文采用基于密度泛函理论的平面波超软赝势方法研究了纯锐钛矿相TiO2、Fe和N单掺杂及Fe和N共掺杂TiO2的能带结构、电荷布居、态密度和光学性质.分析发现:Fe掺杂引起杂质能带位于禁带中央,杂质能带最高点与导带相距大约0.6 eV而最低点与价带相距大约0.2 eV;N掺杂引起的杂质能带位于价带顶部附近. Fe和N共掺杂后杂质能带由两部分组成,位于价带顶上方0.62 eV和导带底下方0.22 eV处,其中一层杂质能带主要由N原子的2p轨道和Fe原子的3d轨道杂化形成,而另一条杂质能带主要由Fe原子的3d轨道形成,由于杂质能级的出现,使锐钛矿TiO2的禁带宽度变小.对光学性质分析发现:Fe和N共掺杂会使锐钛矿TiO2光学吸收带边红移,可见光区的光吸收系数明显增大,在低能区出现了新的吸收峰,对应能量为1.82 eV,与实验结果相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号