首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 96 毫秒
1.
Successive electropolymerization of dopamine and electrodeposition of Pd and/or Pt on a graphene oxide (GO) support were used to prepare anode catalysts for low-temperature fuel cells. Transmission electron microscopy images were used to investigate the morphologies and distribution of the prepared catalysts, which showed the metal formed as nanoparticles on the catalysts. The GO surface was favorable for the modification with electropolymerized polydopamine (PDA) and the electrodeposition of metal catalyst nanoparticles using a simple preparation process. The PDA-loaded GO composite was used as a matrix for the dispersion of Pt and Pd nanoparticles. GO could be simultaneously modified by PDA and reduced without using reducing agents. The electrocatalytic performance of the catalysts for the oxidation of selected small molecule fuels (e.g., methanol, ethanol and formic acid) was examined. An outstanding catalytic activity and stability was found for the prepared Pt/Pd/PDA/GO composite, which was attributed to the high active surface area.  相似文献   

2.
Mixed oxides composed of Zn-Sn, Ti-Sn and V-Sn were prepared by a co-precipitation method and evaluated as catalysts for methanol oxidation in an ambient fixed-bed reactor. Surface analysis by X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between dopant and Sn atoms in the oxide structure and showed the formation of surface states associated with the dopants. Oxygen vacancies were present on the Zn-doped oxide, and the oxidation of methanol to carbon oxides was favored. The Ti-doped oxide exhibited a favorable selectivity to dimethyl ether, related to the oxygen anions near Ti centers. Vanadium dopants not only dramatically increased the catalytic activity but also promoted the partial oxidation of methanol to formaldehyde. Results demonstrate that the bridging dopant-O-Sn bond acts as active sites and influences product distribution.  相似文献   

3.
Surface state and reactivity of vanadium-tin mixed oxide nanoparticles (V/Sn ratios 0.05-0.2) were characterized by spectroscopic techniques and catalytic measurements. Analyses by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) revealed that the oxidation state and surface structure of vanadium oxide species and the electronic interaction between Sn and V atoms are dependent upon the vanadium content. These oxides were evaluated as catalysts for methanol oxidation in a fixed-bed reactor. Both reaction rate and formaldehyde selectivity increased with increasing the vanadium amount in catalyst. Results demonstrate that the V5+ site in the bridging V-O-Sn structure exhibits a high redox activity to facilitate the transformation of adsorbed methoxy to formaldehyde and that the vanadium dispersion plays a crucial role in the surface reactivity. A mechanism that elucidates the catalytic redox process is proposed.  相似文献   

4.
Ordered mesoporous carbons CMK-3 with various morphologies are synthesized by using various mesoporous silica SBA-15 as template and then support to prepare Pt/CMK-3 catalyst. The obtained catalysts are compared in terms of the electrocatalytic activity for methanol oxidation in sulfuric acidic solutions. The structure characterizations and electrochemical analysis reveal that Pt catalysts with the CMK-3 support of large particle size and long channel lengths possess larger electrochemical active surface area (ECSA) and higher activity toward methanol oxidation than those with the other two supports. The better performance of Pt/CMK-3 catalyst may be due to the larger area of electrode/electrolyte interface and larger ECSA value of Pt catalyst, which will provide better structure in favor of the mass transport and the electron transport.  相似文献   

5.
《中国物理 B》2021,30(5):56102-056102
Methanol fuel cells have been intensively developed as clean and high-efficiency energy conversion system due to their high efficiency and low emission of pollutants. Here, we developed a simple aqueous synthetic method to prepare bimetallic Pd Au nanoflowers catalysts for methanol oxidation reaction(MOR) in alkaline environment. Their composition can be directly tuned by changing the ratio between Pd and Au precursors. Compared with commercial Pd/C catalyst, all of the Pd Au nanoflowers catalysts show the enhanced catalytic activity and durability. In particular, the Pd Au nanoflowers specific activity reached 0.72 m A/cm2, which is 14 times that of commercial Pd/C catalyst. The superior MOR activity could be attributed to the unique porous structure and the shift of the d-band center of Pd.  相似文献   

6.
二氧化钛载体包括二氧化钛纳米管阵列(TNTAs)和二氧化钛纳米线阵列(TNWAs)两种,载体的结构不同对催化性能有一定的影响。然而,Pt负载在TNTAs和TNWAs催化性能的比较鲜有报道。本文通过微波法制备了Pt/TNTAs和Pt/TNWAs两种催化剂,结果表明,Pt/TNTAs催化甲醇氧化效果要优于Pt/TNWAs。相较于Pt/TNWAs, Pt/TNTAs的优越催化性能可能与纳米管的限域效应有关。可见,载体的结构对催化剂的性能有很大的影响。  相似文献   

7.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

8.
《Current Applied Physics》2010,10(4):1009-1012
In this work, graphite nanofibers (GNFs) as a catalysts supports were impregnated with Pt and Ru precursor compounds to investigate the effect of various Pt–Ru compositions on the catalytic activity of direct methanol fuel cells (DMFCs). The particle sizes and morphological structures of the catalysts were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical oxidation of the prepared catalysts was investigated by cyclic voltammetry (CV) measurement. Inductive coupled plasma-mass spectrometer (ICP-MS) analysis showed that the metallic ratio in the catalysts was very near to expectations. Cyclic voltammetry showed that the catalysts were electro catalytically active in the methanol oxidation. Among the prepared catalysts, the Pt50Ru50 catalysts exhibited the best electrocatalytic performance. It was concluded that catalytic activity is dependent on the alloy compositions of the catalysts, and that Ru metal has a positive effect on CO poisoning of Pt metal for methanol oxidation.  相似文献   

9.
《Current Applied Physics》2018,18(8):898-904
In this study, Pt-Pd nanoparticles (NPs) supported on few-layer graphene (FLG) have been firstly prepared by one-step arc discharge evaporation of carbon electrodes containing both Pt and Pd elements. The few-layer graphene and Pt-Pd nanoparticles were achieved simultaneously through the evaporation process. After a high-temperature hydrogen treatment, the Pt-Pd/graphene was applied in the study of methanol oxidation in direct methanol fuel cell. The total weight of electrocatalyst keeps 2 wt% of the electrode. The sample with a mass ratio of Pt:Pd = 3:1 (H-Pt3Pd1/G) exhibits better electrocatalytic activity (198 mA mg-1 pt) and better tolerance to carbon monoxide(CO) poisoning (If/Ib = 1.26). It is noteworthy that the value of If/Ib can reach to 1.55 for the sample with the mass ratio of Pt:Pd = 2:1 (H-Pt2Pd1/G),which implies its excellent ability of CO tolerance. The introduction of Pd element may open a new strategy to improve the CO tolerance by arc discharge evaporation.  相似文献   

10.
Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd–Pt alloy/multi-walled carbon nanotubes (Pd–Pt/CNTs) nanocomposites. A good number of Pd–Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd–Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd–Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号