首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The structure of the Si(1 1 1)-6 × 1-Ag surface is investigated using crystal truncation rod (CTR) scattering along 00 rod. For the measurement, we developed a manipulator suitable for observing CTR scattering at large momentum transfer perpendicular to the surface. The heights of the silver and reconstructed silicon atoms from the substrate were determined. We also compared the obtained positions with those of the Si(1 1 1)-√3 × √3-Ag surface and found that the heights of those reconstructed atoms are almost the same.  相似文献   

2.
The carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectra of the acetylene (C2H2) at 1 ML coverage adsorbed on the Si(0 0 1)-(2 × 1) surface at room temperature have been investigated by multiple-scattering cluster (MSC). The MSC result shows that the correct adsorption model of C2H2/Si(0 0 1)-(2 × 1) is unique, i.e. the dimerized structure with two domains, (2 × 1) and (1 × 2).  相似文献   

3.
The growth of silicon carbide nanocrystals on Si(1 0 0) is studied by synchrotron surface X-ray diffraction (SXRD) during annealing at high temperature. A chemisorbed methanol monolayer is used as carbon source, allowing to have a fixed amount of carbon atoms to feed the growth. At room temperature, minor changes in the 2 × 1 reconstruction of silicon are observed due to the formation of Si-O-CH3 and Si-H bonds from methanol molecules. When annealed at 500 °C, carbon incorporation into the silicon leads only to local modifications of the surface structure. Above 600 °C, tri-dimensional silicon carbide nanocrystals growth takes place, together with surface roughening and sharp decrease of domain sizes of the 2 × 1 reconstruction. The different processes taking place at each temperature are clearly distinguished and identified during the real time SXRD measurements.  相似文献   

4.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

5.
Ba-induced quasi-one-dimensional reconstructions of the Si(1 1 1) surface have been investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the 3 × ‘2’ surface shows double-periodicity along the stripes in STM images consistent with half-order streaks observed in LEED patterns, no sign of the double-periodicity along the chain direction was detected for the 5 × 1 surface. The 5× stripes in STM images show internal structures with multiple rows. The two rows comprising the boundaries of a 5× stripe in the filled-state STM image are found to have 3a × √3/2 spacing across the stripe. The observation of the successive 3× and 2× spacings between the boundary rows supports a structural model proposed for the Ba-induced 5 × 1 Si reconstruction composed of honeycomb chains and Seiwatz chains. The highest coverage 2 × 8 surface does not reveal a quasi-1D row structure in STM images.  相似文献   

6.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

7.
Initial adsorption of oxygen molecules on the Si(1 1 0)-16 × 2 surface and subsequent modification of the bonding states induced by mild (300 °C) annealing have been studied by synchrotron-radiation photoemission spectroscopy and scanning-tunneling microscopy. It has been shown that upon annealing, the intensity and the energy positions of the Si 2p suboxide components shift towards the values characteristic for the thermal oxide. This indicates the presence of a metastable chemisorption state of oxygen on the Si(1 1 0)-16 × 2 surface.  相似文献   

8.
Strain relaxation of the epitaxial SiGe layer and Ge diffusion during nickel silicidation by rapid thermal annealing the structure of Ni(≅14 nm)/cap-Si(≅26 nm)/Si0.83Ge0.17/Si(0 0 1) at the elevated annealing temperatures, TA, were investigated by X-ray diffraction analyses of high-resolution ω-2θ scan and reciprocal space mapping. The analyses showed a much larger strain relaxation at a lower TA and a reduction in Ge content in the SiGe layer of Ni/SiGe/Si(0 0 1) after thermal annealing compared to the case of cap-Si/SiGe/Si(0 0 1). The results indicate that the strain relaxation of the SiGe layers in NiSi/SiGe/Si(0 0 1) is related to the phenomena of NiSi agglomeration and penetration into the SiGe layer during silicidation at elevated anneal temperatures ≥750 °C. At elevated TA ≥ 750 °C, Ge diffused into the intact cap-Si area during silicidation.  相似文献   

9.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

10.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

11.
We report on the fabrication of single phase of the Si(1 1 1)-(√31 × √31)-In reconstruction surface, observed by scanning tunneling microscopy (STM) at room temperature. By depositing specific amounts of indium atoms while heating the Si(1 1 1)-(7 × 7) substrate at a critical temperature, the single phase of Si(1 1 1)-(√31 × √31)-In surfaces could be routinely obtained over the whole surface with large domains. This procedure is certified by our high-resolution STM images in the range of 5-700 nm. Besides, the high resolution STM images of the Si(1 1 1)-(√31 × √31)-In surface were also presented.  相似文献   

12.
J.R. Ahn  K.-S. An 《Surface science》2006,600(12):2501-2504
The surface electronic structure of Sb/Si(1 1 3)2 × 5 was investigated by angle-resolved photoemission spectroscopy experiments. This reveals Sb/Si(1 1 3)2 × 5 to have three surface bands with anisotropic two-dimensional characteristics. The band widths of the surface bands along is larger than along . The number of surface bands of Sb/Si(1 1 3)2 × 5 and their band dispersions along and are quite analogous with those of Sb/Si(1 1 3)2 × 2 composed of Sb adatom and Si tetramer chains. The electronic structure analogy suggests that Sb/Si(1 1 3)2 × 5 and Sb/Si(1 1 3)2 × 2 have common building blocks such as Sb adatom and Si tetramer chains.  相似文献   

13.
Nucleation of 2D islands in Si/Si(1 1 1)-7 × 7 molecular beam epitaxy is studied using scanning tunneling microscopy (STM). A detailed analysis of the population of small amorphous clusters coexisting on the surface with epitaxial 2D islands has been performed. It is shown that small clusters tend to form pairs. The pairs serve as precursors for 2D islands as confirmed by direct STM observations of the smallest 2D islands covering two adjacent half-unit cells of the 7 × 7 reconstruction. It is proved with scaling arguments that the critical nucleus for 2D island formation consists not only of the pair itself, but also includes additional adatoms not belonging to the stable clusters.  相似文献   

14.
We investigated the cleaning process of Si(1 0 0) surfaces by annealing in H2 gas ambient following chemical treatments by scanning tunneling microscopy. We observed the monohydride Si structure: Si(1 0 0):2 × 1-H on the surfaces annealed at 1000 °C in 2.5 × 104 Pa H2 gas ambient without conspicuous contaminants. On the sample annealed for 10 min or longer times, well-defined Si(1 0 0) structures with alternating SA and SB steps were observed, whereas the initial roughness still remained on the surfaces annealed for only 5 min.  相似文献   

15.
We report the formation of Si(1 1 3)-3 × 2 facets upon exposing oxygens on the Si(5 5 12) surface at an elevated temperature. These facets are found to form only for a limited range of oxygen exposure and exhibit a well-defined 3 × 2 LEED pattern. We also find the surface electronic state unique only to the facets in the valence band. The spectral feature of these electronic states and the behavior of a (1/3 1/2) LEED spot upon oxygen contents in the facets indicate that the formation is a heterogeneous mixture of the clean Si(1 1 3) facets free of oxygens and other facets containing oxygen atoms.  相似文献   

16.
This study investigated the dynamics of copper atoms adsorbed on Si(1 1 1)-7 × 7 surfaces between 300 K and 623 K using a variable-temperature scanning tunneling microscope (STM). The diffusion behavior of copper clusters containing up to ∼6 atoms into a particular half unit cell of the 7 × 7 reconstructed Si(1 1 1) surface was considered. The movements and the formation of copper clusters were tracked in detail. The activation energies and pre-exponential factors for various diffusion paths were estimated. Finally, the Cu-etching-Si process and the quasi-5 × 5 incommensurated phase of Cu/Si islands were discussed.  相似文献   

17.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

18.
The adsorption-desorption behavior of Si adatoms on GaAs(1 1 1)A-(2 × 2) surfaces is investigated using our ab initio-based approach, in which adsorption and desorption behavior of Si adatoms is described by comparing the calculated desorption energy obtained by total-energy electronic-structure calculations with the chemical potential estimated by quantum statistical mechanics. We find that the Si adsorption at the Ga-vacancy site on the (2 × 2) surfaces with As adatoms occurs less than 1140-1590 K while the adsorption without As adatom does less than 630-900 K. The change in adsorption temperature of Si adatoms by As adatoms is due to self-surfactant effects of As adatoms: the promotion of the Si adsorption triggered by As adatoms is found to be interpreted in terms of the band-energy stabilization. Furthermore, the stable temperature range for Si adsorbed surfaces with As adatoms agrees with the experimental results. The obtained results provide a firm theoretical framework to clarify n-type doping processes during GaAs epitaxial growth.  相似文献   

19.
R. Koch 《Surface science》2006,600(20):4694-4701
The (2 × n) superstructure of Si(0 0 1) consists of elongated (2 × 1) reconstructed stripes separated by a dimer-vacancy line every few nanometers, thus offering a means to obtain a nanopattered Si(0 0 1) surface. Scanning tunneling microscopy (STM) investigations of Si(0 0 1) substrates that were deoxidized at 880-920 °C reveal that the formation of the (2 × n) depends strongly on the Si coverage of the topmost surface layer. It forms only in a narrow coverage window ranging from 0.6 to 0.8 ML. Systematic Monte Carlo simulations by an algorithm that combines the diffusion of monomers and dimers with the simultaneous deposition of Si onto the Si(0 0 1) surface, corroborate the STM results and suggest Si deposition as a viable alternative for introducing dimer vacancies in a well-defined manner.  相似文献   

20.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号