首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
An investigation on erosion behavior of HVOF sprayed WC-CoCr coatings   总被引:1,自引:0,他引:1  
Present work is an investigation of slurry erosion behavior of WC-CoCr cermet coatings deposited with two different WC grain sizes. HVOF thermal spray process was employed due to its high velocity and low flame temperature characteristics resulting in quality coating. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control its heating. Slurry erosion testing was performed using a pot-type slurry erosion tester to evaluate slurry erosion resistance of the coatings. Two parameters were considered for testing viz. erodent particle size and slurry concentration. Surface morphology was examined using SEM images and phase identification was done by XRD. The erosion behavior and mechanism of material removal was studied and discussed based on microstructural examination. It was observed that WC-CoCr cermet coating deposited with fine grain WC exhibits higher slurry erosion resistance under all testing conditions as compared to conventional cermet coating.  相似文献   

2.
The thick Ni-coated WC coatings, in a matrix of Nickel-based alloys, were prepared on AISI 1045 steel using plasma cladding equipment. A pre-placed layer of uniform mixture, with different weight fractions of Ni-coated WC powder and Nickel-based alloy powder, on the steel substrate was melted at the high temperature of the plasma jet. The coating composition, microstructure and microhardness were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS) and microhardness testing. The experimental results show that the metallurgical bond was formed between the coating and substrate. The XRD results show that the coatings contain γ-Ni, carbides (such as M23C6 and M7C3) and boride (such as Fe2B, Fe3B phases). SEM shows that all the coatings are crack-free with lower porosity (<1%). It is found that the microhardness and the electrochemical behavior of the coatings are depended on the content of Ni-coated WC powder. The corrosion mechanism for the coatings may be due to the microgalvance corrosion between the phases in the cladding coatings.  相似文献   

3.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   

4.
In this paper, two average tungsten carbide particle sizes of 2, 0.5?μm are placed respectively, in contact with a WC-16Co substrate, pressed at the pressure of 4.5–5.5?GPa, and heated to temperatures ranging from 1350°C to 1500°C in a large-volume cubic press. During the process Co was forced out of the WC-16Co substrate into the compressed powder. The resulting infiltrated samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Vickers hardness and cutting performance tests. The results of XRD confirmed that the sintered bulks have WC and Co phases. The scanning electron microscopy (SEM) analysis reveals that the WC grains in well-sintered alloys are round in shape and cobalt with lower content is uniformly dispersed in the WC grain boundaries. The sintered sub-micron WC-Co alloy with a cobalt content of 3.8?wt% exhibits a prominent combination of high hardness value of 23.1?GPa and a large fracture toughness value of 8.6?MPa?m½. The high-speed cutting tests indicating its cutting performance is significantly superior to the commercial YG6X (WC-6?wt%Co with WC grain size of 0.5?μm).  相似文献   

5.
D.W. Wheeler 《哲学杂志》2013,93(3):285-310
This paper describes a study of the behaviour of diamond coatings when subjected to solid particle erosion from sand particles. The coatings were deposited by chemical vapour deposition (CVD) onto tungsten substrates and tested using a high velocity air–sand erosion test facility. The erosion tests were conducted using particle impact velocities of between 33 and 268 m/s. Examination of the eroded test specimens showed that the principal damage features were circumferential cracks and pin-holes. Comparison with Hertz impact theory revealed that the measured circumferential crack diameters were more than double the predicted Hertzian contact diameter. Moreover, a trend of increasing circumferential crack diameter with coating thickness, which is not predicted by Hertz, was found. Instead, the crack diameters showed good agreement with those predicted by the theory of stress wave reinforcement, which is more commonly associated with liquid impact damage of brittle materials. During impact, the bulk compression and shear waves are reflected at the rear surface of debonded regions of the coating to return to the front surface and reinforce the Rayleigh surface wave, which generates a tensile stress. Where this stress exceeds the local tensile strength of the coating, a ring of cracks surrounding the area of impact is created. The results from the present study therefore suggest that stress wave reflection is responsible for the formation of the cracks at locally debonded regions of the coating. This hypothesis was supported by images acquired using scanning acoustic microscopy, which showed that circumferential cracks and pin-holes were only found on areas of the coating that had become delaminated by multiple particle impacts during the erosion tests.  相似文献   

6.
This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.  相似文献   

7.
Several typical high-velocity oxy-fuel (HVOF)-sprayed coatings, including WC-10Co4Cr coatings, Co-based coatings, WC-10Co4Cr/Co-based composite coatings, and Fe-based amorphous/nanocrystalline coatings were fabricated, and their cavitation behavior was evaluated in deionized water. Further, in-situ SEM surface observations were used to understand the microstructure of tested coatings. The results show that cavitation erosion initially occurred at pre-existing defects in the coatings. Meanwhile, it was found that cavitation erosion damage of the WC-10Co4Cr/Co-based composite coating, which contained a hard reinforcing phase (WC-10Co4Cr phase) and a soft matrix phase (Co-based phase), preferentially occurred at or around pores and microcracks in the reinforcement, rather than in the defect free matrix. This suggested that defects were a critical contributing factor to cavitation damage of the composite coatings. Furthermore, a mechanism was suggested to explicate the cavitation behavior of composite coatings. The approach of using in-situ SEM surface observations proved to be useful for the analysis of the cavitation mechanism of engineering materials and protective coatings.  相似文献   

8.
The critical velocity for particle deposition in cold spraying is a key parameter, which depends not only on the material type, but also the particle temperature and oxidation condition. The dependency of deposition efficiency of cold spray Cu particles on the particle temperature and surface oxidation was examined. The effect of particle surface oxide scales on the interfacial microstructure and adhesive strength of the cold-sprayed Cu coatings was investigated. The results show that the deposition efficiency significantly increases with increasing the gas temperature but decreases with augmenting the oxygen content of the starting powder. The oxide inclusions at the interfaces between the deposited particles inhibit the effective bonding of fresh metals and remarkably lower the bond strength of the deposited Cu coatings on steel.  相似文献   

9.
The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC–Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.  相似文献   

10.
The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1 M H2SO4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号