首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We propose a method for the determination of a characteristic oscillation frequency for a broad class of chaotic oscillators generating complex signals. It is based on the locking of standard periodic self-sustained oscillators by an irregular signal. The method is applied to experimental data from chaotic electrochemical oscillators, where other approaches of frequency determination (e.g., based on Hilbert transform) fail. Using the method we characterize the effects of phase synchronization for systems with ill-defined phase by external forcing and due to mutual coupling.  相似文献   

2.
We theoretically investigate the collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase synchronization. We show that the macroscopic rhythms can exhibit effective antiphase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.  相似文献   

3.
We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.  相似文献   

4.
In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest, in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays.  相似文献   

5.
We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.  相似文献   

6.
We consider networks of coupled phase oscillators of different complexity: Kuramoto–Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.  相似文献   

7.
王立明  吴峰 《物理学报》2013,62(21):210504-210504
研究了耦合分数阶振子的同步、反同步和振幅死亡等问题. 基于P-R振子在特定参数下的双稳态特性, 利用最大条件Lyapunov指数、最大Lyapunov指数和分岔图等数值方法分析发现, 通过选取初始条件和耦合强度, 可以控制耦合振子呈现混沌同步、混沌反同步、全部振幅死亡同步、全部振幅死亡反同步和部 分振幅死亡等丰富的动力学现象. 基于蒙特卡罗方法的原理, 在初始条件相空间中随机选取耦合振子的初始位置, 计算不同耦合强度下耦合振子的全部振幅死亡态、部分振幅死亡态和非振幅死亡态的比例, 从统计学角度表征了耦合分数阶双稳态振子的动力学特征. 几种有代表性的双稳态振子的吸引域进一步证明了统计方法的计算结果. 关键词: 振幅死亡 吸引域 双稳态  相似文献   

8.
A new method to determine a coupling function in a phase model is theoretically derived for coupled self-sustained oscillators and applied to Belousov-Zhabotinsky (BZ) oscillators. The synchronous behavior of two coupled BZ reactors is explained extremely well in terms of the coupling function thus obtained. This method is expected to be applicable to weakly coupled multioscillator systems, in which mutual coupling among nearly identical oscillators occurs in a similar manner. The importance of higher-order harmonic terms involved in the coupling function is also discussed.  相似文献   

9.
We generalize the n:m phase synchronization between two chaotic oscillators by mutual coupling phase signals. To characterize this phenomenon, we use two coupled oscillators to demonstrate their phase synchronization with amplitudes practically noncorrelated. We take the 1:1 phase synchronization as an example to show the properties of mean frequencies, mean phase difference, and Lyapunov exponents at various values of coupling strength. The phase difference increases with 2pi phase slips below the transition. The scaling rules of the slip near and away from the transition are studied. Furthermore, we demonstrate the transition to a variety of n:m phase synchronizations and analyze the corresponding coupling dynamics. (c) 2002 American Institute of Physics.  相似文献   

10.
We investigate chaotic phase synchronization (CPS) in three-coupled chaotic oscillator systems. According to the coupling strength and mismatches in the frequencies of these oscillators, we can observe complete CPS where all three oscillators exhibit CPS, and partial CPS where only two oscillators exhibit CPS. When the coupling strength is weakened, we observe a phenomenon that complete CPS among the three oscillators is suddenly disrupted without going through partial CPS. In this case oscillators exhibit quasi-CPS where two oscillators appear to exhibit CPS transiently, and the combination of the two oscillators changes with time. We call this phenomenon CPS switching D. It is revealed that phase fluctuation plays an important role in CPS switching D. It is also shown that the amplitude with a specific structure strengthens the degree of CPS switching. In the present paper, we characterize this CPS switching and discuss its mechanism.  相似文献   

11.
Phase locking, which is achieved by transferring some energy from one oscillator to the others, strongly depends on the coupling strength between the oscillators. Typically, the coupling strength must be above a certain threshold in order to achieve phase locking. Here we show how this threshold can be significantly reduced when phase-dependent losses are introduced into the oscillators. Specifically, the coupling strength can be reduced by at least an order of magnitude, thereby substantially decreasing the needed transfer of energy between oscillators. The resulting enhancement of phase locking does not only influence the laser research area, but also affects many other areas that involve coupled ensembles.  相似文献   

12.
Anomalous phase synchronization in nonidentical interacting oscillators is manifest as the increase of frequency disorder prior to synchronization. We show that this effect can be enhanced when a time-delay is included in the coupling. In systems of limit-cycle and chaotic oscillators we find that the regions of phase disorder and phase synchronization can be interwoven in the parameter space such that as a function of coupling or time-delay the system shows transitions from phase ordering to disorder and back.  相似文献   

13.
We demonstrate in numerical experiments that estimators of strength and directionality of coupling between oscillators based on modeling of their phase dynamics [D. A. Smirnov and B. P. Bezruchko, Phys. Rev. E 68, 046209 (2003)] are widely applicable. Namely, although the expressions for the estimators and their confidence bands are derived for linear uncoupled oscillators under the influence of independent sources of Gaussian white noise, they turn out to allow reliable characterization of coupling from relatively short time series for different properties of noise, significant phase nonlinearity of the oscillators, and nonvanishing coupling between them. We apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram (EEG) recording with the purpose of epileptic focus localization.  相似文献   

14.
This paper is focused on the problem of complete synchronization in arrays of externally driven identical or slightly different oscillators. These oscillators are coupled by common driving which makes an occurrence of generalized synchronization between a driving signal and response oscillators possible. Therefore, the phenomenon of generalized synchronization is also analyzed here. The research is concentrated on the cases of an irregular (chaotic or stochastic) driving signal acting on continuous-time (Duffing systems) and discrete-time (Henon maps) response oscillators. As a tool for quantifying the robustness of the synchronized state, response (conditional) Lyapunov exponents are applied. The most significant result presented in this paper is a novel method of estimation of the largest response Lyapunov exponent. This approach is based on the complete synchronization of two twin response subsystems via additional master-slave coupling between them. Examples of the method application and its comparison with the classical algorithm for calculation of Lyapunov exponents are widely demonstrated. Finally, the idea of effective response Lyapunov exponents, which allows us to quantify the synchronizability in case of slightly different response oscillators, is introduced.  相似文献   

15.
Complete synchronization of Kuramoto oscillators with finite inertia   总被引:1,自引:0,他引:1  
We present an approach based on Gronwall’s inequalities for the asymptotic complete phase-frequency synchronization of Kuramoto oscillators with finite inertia. For given finite inertia and coupling strength, we present admissible classes of initial configurations and natural frequency distributions, which lead to the complete phase-frequency synchronization asymptotically. For this, we explicitly identify invariant regions for the Kuramoto flow, and derive second-order Gronwall’s inequalities for the evolution of phase and frequency diameters. Our detailed time-decay estimates for phase and frequency diameters are independent of the number of oscillators. We also compare our analytical results with numerical simulations.  相似文献   

16.
We study phase synchronization in oscillator networks through phase reduced method. The dynamics of networks is reduced to phase equations by this method. Analysing the phase equations through the master stability function method, one obtains that the oscillators with identical frequency can be in-phase synchronized by weak balanced coupling. Similarly, the problem of frequency synchronization of oscillators with different frequencies is transformed to the existence of a locally asymptotically stable equilibrium of the phase error system.  相似文献   

17.
In this Letter, a method based on the effects of imperfect oscillators in lasers is proposed to distinguish targets in continuous wave tracking lidar. This technique is based on the fact that each lidar signal source has a specific influence on the phase noise that makes real targets from the false ones. A simulated signal is produced by complex circuits, modulators, memory, and signal oscillators. For example, a deception laser beam has an unequal and variable phase noise from a real target. Thus, the phase noise of transmitted and received signals does not have the same power levels and patterns. To consider the performance of the suggested method, the probability of detection(PD) is shown for various signal-to-noise ratios and signal-to-jammer ratios based on experimental outcomes.  相似文献   

18.
We study the dynamics of a repulsively coupled array of phase oscillators. For an array of globally coupled identical oscillators, repulsive coupling results in a family of synchronized regimes characterized by zero mean field. If the number of oscillators is sufficiently large, phase locking among oscillators is destroyed, independently of the coupling strength, when the oscillators' natural frequencies are not the same. In locally coupled networks, however, phase locking occurs even for nonidentical oscillators when the coupling strength is sufficiently strong.  相似文献   

19.
We discuss the asymptotic complete phase-frequency synchronization for the Kuramoto phase model with a finite size N. We present sufficient conditions for initial configurations leading to the exponential decay toward the completely synchronized states. Our new sufficient conditions and decay rate depend only on the coupling strength and the diameter of initial phase and natural frequency configurations. But they are independent of the system size N, hence they can be used for the mean-field limit. For the complete synchronization estimates, we estimate the time evolution of the phase and frequency diameters for configurations. The initial phase configurations for identical oscillators located on the half circle will converge to the complete synchronized states exponentially fast. In contrast, for the non-identical oscillators, the complete frequency synchronization will occur exponentially fast for some restricted class of initial phase configurations. Our estimates are based on the monotonicity arguments of extremal phase and frequencies, which do not employ any linearization procedure of nonlinear coupling terms and detailed information on the eigenvalue of the linearized system around the complete synchronized states. We compare our analytical results with numerical simulations.  相似文献   

20.
We experimentally investigate the transition to synchronization in a population of photochemical oscillators with weak global coupling. Above a critical coupling strength the oscillators join a one-phase group or two-phase clusters. The number of oscillators in each cluster depends on the initial phase distribution, and irregular switching of oscillators between clusters is observed. The fully synchronized state emerges above a second critical coupling strength. In agreement with earlier theory, the experiments demonstrate the importance of population heterogeneity in cluster multistability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号