首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
Closants, or consonantlike sounds in infant vocalizations, were described acoustically using 16-kHz spectrograms and LPC or FFT analyses based on waveforms sampled at 20 or 40 kHz. The two major closant types studied were fricatives and trills. Compared to similar fricative sounds in adult speech, the fricative sounds of the 3-, 6-, 9-, and 12-month-old infants had primary spectral components at higher frequencies, i.e., to and above 14 kHz. Trill rate varied from 16-180 Hz with a mean of about 100, approximately four times the mean trill rate reported for adult talkers. Acoustic features are described for various places of articulation for fricatives and trills. The discussion of the data emphasizes dimensions of acoustic contrast that appear in infant vocalizations during the first year of life, and implications of the spectral data for auditory and motor self-stimulation by normal-hearing and hearing-impaired infants.  相似文献   

2.
The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.  相似文献   

3.
Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.  相似文献   

4.
Sounds of blue whales were recorded from U.S. Navy hydrophone arrays in the North Atlantic. The most common signals were long, patterned sequences of very-low-frequency sounds in the 15-20 Hz band. Sounds within a sequence were hierarchically organized into phrases consisting of one or two different sound types. Sequences were typically composed of two-part phrases repeated every 73 s: a constant-frequency tonal "A" part lasting approximately 8 s, followed 5 s later by a frequency-modulated "B" part lasting approximately 11 s. A common sequence variant consisted only of repetitions of part A. Sequences were separated by silent periods averaging just over four minutes. Two other sound types are described: a 2-5 s tone at 9 Hz, and a 5-7 s inflected tone that swept up in frequency to ca. 70 Hz and then rapidly down to 25 Hz. The general characteristics of repeated sequences of simple combinations of long-duration, very-low-frequency sound units repeated every 1-2 min are typical of blue whale sounds recorded in other parts of the world. However, the specific frequency, duration, and repetition interval features of these North Atlantic sounds are different than those reported from other regions, lending further support to the notion that geographically separate blue whale populations have distinctive acoustic displays.  相似文献   

5.
Prolonged listening to a pulse train with repetition rates around 100 Hz induces a striking aftereffect, whereby subsequently presented sounds are heard with an unusually "metallic" timbre [Rosenblith et al., Science 106, 333-335 (1947)]. The mechanisms responsible for this auditory aftereffect are currently unknown. Whether the aftereffect is related to an alteration of the perception of temporal envelope fluctuations was evaluated. Detection thresholds for sinusoidal amplitude modulation (AM) imposed onto noise-burst carriers were measured for different AM frequencies (50-500 Hz), following the continuous presentation of a periodic pulse train, a temporally jittered pulse train, or an unmodulated noise. AM detection thresholds for AM frequencies of 100 Hz and above were significantly elevated compared to thresholds in quiet, following the presentation of the pulse-train inducers, and both induced a subjective auditory aftereffect. Unmodulated noise, which produced no audible aftereffect, left AM detection thresholds unchanged. Additional experiments revealed that, like the Rosenblith et al. aftereffect, the effect on AM thresholds does not transfer across ears, is not eliminated by protracted training, and can last several tens of seconds. The results suggest that the Rosenblith et al. aftereffect is related to a temporary alteration in the perception of fast temporal envelope fluctuations in sounds.  相似文献   

6.
A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-1obed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3 m·s^-1 and 98.7 m·s^-2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer.  相似文献   

7.
Recordings of sounds underwater and in air, and of iceborne vibrations, were obtained at Northstar Island, an artificial gravel island in the Beaufort Sea near Prudhoe Bay (Alaska). The aim was to document the levels, characteristics, and range dependence of sounds and vibrations produced by drilling and oil production during the winter, when the island was surrounded by shore-fast ice. Drilling produced the highest underwater broadband (10-10,000 Hz) levels (maximum= 124 dB re: 1 microPa at 1 km), and mainly affected 700-1400 Hz frequencies. In contrast, drilling did not increase broadband levels in air or ice relative to levels during other island activities. Production did not increase broadband levels for any of the sensors. In all media, broadband levels decreased by approximately 20 dB/tenfold change in distance. Background levels underwater were reached by 9.4 km during drilling and 3-4 km without. In the air and ice, background levels were reached 5-10 km and 2-10 km from Northstar, respectively, depending on the wind but irrespective of drilling. A comparison of the recorded sounds with harbor and ringed seal audiograms showed that Northstar sounds were probably audible to seals, at least intermittently, out to approximately 1.5 km in water and approximately 5 km in air.  相似文献   

8.
Three experiments tested listeners' ability to identify 70 diverse environmental sounds using limited spectral information. Experiment 1 employed low- and high-pass filtered sounds with filter cutoffs ranging from 300 to 8000 Hz. Listeners were quite good (>50% correct) at identifying the sounds even when severely filtered; for the high-pass filters, performance was never below 70%. Experiment 2 used octave-wide bandpass filtered sounds with center frequencies from 212 to 6788 Hz and found that performance with the higher bandpass filters was from 70%-80% correct, whereas with the lower filters listeners achieved 30%-50% correct. To examine the contribution of temporal factors, in experiment 3 vocoder methods were used to create event-modulated noises (EMN) which had extremely limited spectral information. About half of the 70 EMN were identifiable on the basis of the temporal patterning. Multiple regression analysis suggested that some acoustic features listeners may use to identify EMN include envelope shape, periodicity, and the consistency of temporal changes across frequency channels. Identification performance with high- and low-pass filtered environmental sounds varied in a manner similar to that of speech sounds, except that there seemed to be somewhat more information in the higher frequencies for the environmental sounds used in this experiment.  相似文献   

9.
In this article the results are reported of a study to measure the intensity of the vocal displays of a population of American alligators (Alligator mississippiensis). It was found that the dominant frequencies in air range between 20 and 250 Hz with a source sound pressure level (SPL) of 91-94 dB at 1 m. The active space for the air-borne component is defined by the background and was estimated to be in a range up to 159 m in the 125-200 Hz band. For the water-borne component the dominant frequency range was 20-100 Hz with a source SPL of 121-125 dB at 1 m. The active space in water is defined by hearing thresholds and was estimated to range up to 1.5 km in the 63-100 Hz band. In the lowest frequency bands, i.e., 16-50 Hz, the estimated active space for otolith detection of near-field particle motion in water ranged to 80 m, which compared significantly with far-field detection for these frequencies. It is suggested that alligator vocal communication may involve two distinct sensory mechanisms which may subserve the functions of scene analysis and reproduction, respectively.  相似文献   

10.
Conspicuous sonic click sounds were recorded in the presence of cod (Gadus morhua), together with either harp seals (Pagophilus groenlandicus), hooded seals (Cystophora cristata) or a human diver in a pool. Similar sounds were never recorded in the presence of salmon (Salmo salar) together with either seal species, or from either seal or fish species when kept separately in the pool. It is concluded that cod was the source of these sounds and that the clicks were produced only when cod were approached by a swimming predatorlike body. The analyzed click sounds (n = 377) had the following characteristics (overall averages +/- S.D.): peak frequency = 5.95 +/- 2.22 kHz; peak-to-peak duration = 0.70 +/- 0.45 ms; sound pressure level (received level) = 153.2 +/- 7.0 dB re 1 microPa at 1 m. At present the mechanism and purpose of these clicks is not known. However, the circumstances under which they were recorded and some observations on the behavior of the seals both suggest that the clicks could have a predator startling function.  相似文献   

11.
For 23 cadaver ears from Norwegian cattle, frequency characteristics for the round-window volume displacement relative to the sound pressure at the eardrum have been measured, and are compared to earlier results for human ears [M. Kringlebotn and T. Gundersen, J. Acoust. Soc. Am. 77(1), 159-164 (1985)]. For human as well as for cattle ears, mean amplitude curves have peaks at about 0.7 kHz. At lower frequencies, the mean amplitude for cattle ears is about 5 dB smaller than for human ears. The amplitude curves cross at about 2 kHz, and toward higher frequencies the amplitude for cattle ears becomes increasingly larger. If amplitude curves are roughly approximated by straight lines above 1 kHz, the slope for cattle ears is about -5 dB/octave as compared to about -15 dB/octave for human ears. The phase of the round-window volume displacement lags behind the phase of the sound pressure at the tympanic membrane. The phase lag is close to zero below 0.2 kHz, but increases to about 3.5 pi at 20 kHz for cattle ears, as compared to less than 2 pi for human ears. Further investigations are needed in order to explain the observed differences. Sound transmission in the ear decreases with an increasing static pressure difference across the tympanic membrane, especially at frequencies below 1 kHz, where pressure differences of 10 and 60 cm water cause mean transmission losses of about 10 and 26 dB, respectively, the losses being somewhat larger for overpressures than for underpressures in the ear canal. At higher frequencies, the transmission losses are smaller. For small overpressures, and in a limited frequency range near 3 kHz, even some transmission enhancement may occur. Static pressure variations in the inner ear have only a minor influence on sound transmission. Static pressures relative to the middle ear in the range 0-60 cm water cause mean sound transmission losses less than 5 dB below 1 kHz, and negligible losses at higher frequencies.  相似文献   

12.
During the mid-1980s, calibrated measurements of ambient noise and wind speed were made in the Tongue of the Ocean in the Bahamas to quantify the spectra and statistics of wind-generated noise. This deep basin is topographically isolated from the Atlantic Ocean and, therefore, largely acoustically decoupled from the Atlantic Ocean deep sound channel. The quantitative effects of contaminating (non-surface wind-generated) noise sources within the basin were eliminated by careful measurement and robust statistical analysis methodologies. Above 500 Hz, the spectral slopes are approximately -5 dB per octave and independent of wind speed. Below 500 Hz, the ambient noise is no longer a linear function of wind speed. Below 100 Hz and for wind speeds greater than 18.5 knots (kt), the ambient noise is independent of frequency. The minimum observed ambient noise level falls 13 dB below Urick's "light shipping" level at 30 Hz and 2-5 dB below Wenz's sea state zero level through the wind-dominated portion of the spectrum. The basin's geographical isolation and the rigorous measurement and analysis methodologies employed make this two-decade-old data set a reasonable and justified proxy for pre-industrial era ocean noise levels in the 20 Hz to 20 kHz frequency band.  相似文献   

13.
14.
The impedance of the middle-ear air space was measured on three human cadaver ears with complete mastoid air-cell systems. Below 500 Hz, the impedance is approximately compliance-like, and at higher frequencies (500-6000 Hz) the impedance magnitude has several (five to nine) extrema. Mechanisms for these extrema are identified and described through circuit models of the middle-ear air space. The measurements demonstrate that the middle-ear air space impedance can affect the middle-ear impedance at the tympanic membrane by as much as 10 dB at frequencies greater than 1000 Hz. Thus, variations in the middle-ear air space impedance that result from variations in anatomy of the middle-ear air space can contribute to inter-ear variations in both impedance measurements and otoacoustic emissions, when measured at the tympanic membrane.  相似文献   

15.
In this report we present the first behavioral measurements of auditory sensitivity for Pollimyrus adspersus. Pollimyrus is an electric fish (Mormyridae) that uses both electric and acoustic signals for communication. Tone detection was assessed from the fish's electric organ discharge rate. Suprathreshold tones usually evoked an accelerated rate in naive animals. This response (rate modulation > or =25%) was maintained in a classical conditioning paradigm by presenting a weak electric current near the offset of 3.5-s tone bursts. An adaptive staircase procedure was used to find detection thresholds at frequencies between 100 and 1700 Hz. The mean audiogram from six individuals revealed high sensitivity in the 200-900 Hz range, with the best thresholds near 500 Hz (66.5+/-4.2 SE dB re: 1 microPa). Sensitivity declined slowly (about 20 dB/octave) above and below this sensitivity maximum. Sensitivity fell off rapidly above 1 kHz (about 60 dB/octave) and no responses were observed at 5 kHz. This behavioral sensitivity matched closely the spectral content of the sounds that this species produced during courtship. Experiments with click trains showed that sensitivity (about 83-dB peak) was independent of inter-click-interval, within the 10-100 ms range.  相似文献   

16.
The problem of a single acoustically driven bubble translating unsteadily in a fluid is considered. The investigation of the translation equation identifies the inverse Reynolds number as a small perturbation parameter. The objective is to obtain a closed-form, leading order solution for the translation of the bubble, assuming nonlinear radial oscillations and a pressure field as the forcing term. In a second part, the periodic attractor of the Rayleigh-Plesset equation serves as basis for an optimal acoustic forcing designed to achieve maximized bubble translation over one dimensionless period. At near-resonant or super-resonant driving frequencies, it seems one cannot improve much on sinusoidal forcing. However at moderate acoustic intensity and sub-resonant frequencies, acoustic wave forms that enhance bubble collapse lead to displacement many times larger than the case of purely sinusoidal forcing. The survey covers a wide spectrum of driving ratios and bubble diameters including those relevant to biomedical applications. Shape stability issues are considered. Together, these results suggest new ways to predict some of the direct and indirect effects of the acoustic radiation force in applications such as targeted drug delivery, selective bubble driving, and accumulation.  相似文献   

17.
Little is known about feeding behavior of wild dugongs (Dugong dugon) because direct measurements of feeding events in the water were scarcely feasible. In this study, the authors achieved the first successful feeding sound monitoring in a seagrass area using a full-band underwater recording system (called automatic underwater sound monitoring system for dugong: AUSOMS-D). In total, 175 feeding sounds were identified in 205 h of recording. Feeding sounds were only detected at night, implying diurnal differences in the feeding behavior of the studied dugong population. Differences in periodicity of feeding sounds suggested that two or more individuals were in the acoustically observable area. Furthermore, a feeding position monitored by two AUSOMS-Ds was used to calculate source levels of dugong feeding sounds. Assuming spherical_propagation, source levels were measured between 70.6 and 79.0 dB rms re 1 microPa/square root of Hz.  相似文献   

18.
The ability of baboons to discriminate changes in the formant structures of a synthetic baboon grunt call and an acoustically similar human vowel (/epsilon/) was examined to determine how comparable baboons are to humans in discriminating small changes in vowel sounds, and whether or not any species-specific advantage in discriminability might exist when baboons discriminate their own vocalizations. Baboons were trained to press and hold down a lever to produce a pulsed train of a standard sound (e.g., /epsilon/ or a baboon grunt call), and to release the lever only when a variant of the sound occurred. Synthetic variants of each sound had the same first and third through fifth formants (F1 and F3-5), but varied in the location of the second formant (F2). Thresholds for F2 frequency changes were 55 and 67 Hz for the grunt and vowel stimuli, respectively, and were not statistically different from one another. Baboons discriminated changes in vowel formant structures comparable to those discriminated by humans. No distinct advantages in discrimination performances were observed when the baboons discriminated these synthetic grunt vocalizations.  相似文献   

19.
Stimulus frequency otoacoustic emission (SFOAE) sound pressure level (SPL) and latency were measured at probe frequencies from 500 to 4000 Hz and probe levels from 40 to 70 dB SPL in 16 normal-hearing adult ears. The main goal was to use SFOAE latency estimates to better understand possible source mechanisms such as linear coherent reflection, nonlinear distortion, and reverse transmission via the cochlear fluid, and how those sources might change as a function of stimulus level. Another goal was to use SFOAE latencies to noninvasively estimate cochlear tuning. SFOAEs were dominated by the reflection source at low stimulus levels, consistent with previous research, but neither nonlinear distortion nor fluid compression become the dominant source even at the highest stimulus level. At each stimulus level, the SFOAE latency was an approximately constant number of periods from 1000 to 4000 Hz, consistent with cochlear scaling symmetry. SFOAE latency decreased with increasing stimulus level in an approximately frequency-independent manner. Tuning estimates were constant above 1000 Hz, consistent with simultaneous masking data, but in contrast to previous estimates from SFOAEs.  相似文献   

20.
Intensity discrimination with cochlear implants   总被引:2,自引:0,他引:2  
Intensity difference limens were measured for various frequencies and intensities of sinusoidal and pulsatile electrical stimulation in monkeys with electrodes implanted in the scala tympani, scala vestibuli, modiolus, or middle ear. Difference limens decreased, as a function of initial stimulus intensity, from values of 1.5-3 dB near threshold to as low as 0.5 dB near the upper limit of the dynamic range. If sensation level was held constant, difference limens decreased as a function of frequency up to about 500 Hz, and then remained constant. They were similar across a variety of electrode placements and separations if differences in threshold and dynamic range were taken into account. However, difference limens measured in severely damaged ears were slightly smaller than those in moderately damaged ears. The near miss to Weber's law, characteristic of acoustic difference limens, was not seen with electrical stimuli. Differences limens for electrical stimuli were roughly one-half those for acoustic stimuli; thus, part of the deficit in dynamic range for electrical stimulation compared with acoustic stimulation is countered by the smaller intensity differences limens for electrical stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号