首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to better understand the biological efficacy of the tridentate aroyl hydrazone Cu(II) complexes, the Cu(II) complex of di-2-pyridyl ketone isonicotinoyl hydrazone ligand (HL), {[Cu(L)(H2O)]·H2O·NO3}n (C1) was synthesized and characterized. Single crystal X-ray study reveals that complex C1 forms 1D zigzag chains in solid state. In water, the hydrolysis of the 1D zigzag chains was observed, and finally formation of monomeric species. In vitro studies revealed that complex C1 showed significantly more anticancer activity than the ligand alone. Investigation of the anticancer mechanisms of C1, confirmed that the Cu(II) complex exhibit a strong capacity to promote productions of reactive oxygen species (ROS), leading to caspase-dependent apoptotic cell death.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1430-1434
Nano-structures of the Cu(II) metal–organic framework, {Cu(BDT)(DMF)·CH3OH·0.25DMF}n (1), which BDT2− is 1,4-benzeneditetrazolate, have been synthesized by the reaction of H2BDT with Cu(NO3)2·6H2O via ultrasonic irradiation in three different temperatures, which causes different morphologies. The products were characterized by IR spectroscopy, elemental analysis, scanning electron microscopy and X-ray powder diffraction. This study demonstrates that sonochemistry is a suitable method for preparation of metal–organic framework nano-structures and temperature is an effective parameter on morphologies of Cu(II) metal–organic framework nano-structures.  相似文献   

3.
Two new potassium coordination supramolecular compounds (2D and 1D), [K(H3L)(H2L)(H2O)]n·H2O (1) and [K(H2L′)(HL′)(H2O)2]·H2O (2), (L = 1,3,5-tricarboxylic acid, L′ = 2,6-pyridinedicarboxylic acid), have been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), FT-IR spectroscopy and elemental analyses. Single crystal X-ray analyses on compounds 1 and 2 show that K+ ions are 3- and 7-coordinated, respectively. Additionally, H-bonds incorporate the layers and chains in 1 and 2 into 3D and 2D (along (0,0,1) direction) frameworks. Topological analysis shows that the compound 1 and 2 are 3,6-coordinated kgd and 2,4-coordinated 2,4C4 net. The thermal stability of compounds 1 and 2 in bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA) and compared each other. The role of different parameters like temperature, reaction time and ultrasound irradiation power on the growth and morphology of the nano-structures are studied. Results suggest that an increase of temperature, sonication power and reduction of reaction time led to a particle size decrease.  相似文献   

4.
Studies on speciation have been done in the mixtures of mixed ligand copper complexes. Three heterogeneous mixtures have been studied, each having one Cu(I) complex and one Cu(II) complex. The Cu(I) complex is [Cu(thu)Cl 0.5H2O] (1) and the Cu(II) complexes are [Cu(L-phen)(bpy) H2O] (2), [Cu(L-tyr)(phn) 2.5H2O] (3), and [Cu(dien)(ina) 4H2O.1/2SO4] (4) (where thu = thiourea, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine, tyr = tyrosine, dien = diethylenetriamine, and ina = isonicotinate anion). The mixtures have been prepared by mixing the Cu(I) complex with each of the Cu(II) complexes in the ratio of 1:1 by mole percentage. The X-ray absorption fine structure (XAFS) spectra have been recorded at the K-edge of copper in the mixtures as well as in the complexes, separately. The aim of the present work is to make a study of the different methods of speciation using XAFS, viz., principal component analysis (PCA) and the target transformation (TT) method, the linear combination fitting (LCF) method, derivative spectra methods, and normalized difference absorption edge spectra (NDAES) analysis. It has been shown that these methods can be used to determine the relative quantity of the mixed ligand complexes in their mixtures.  相似文献   

5.
A cobalt(II) complex of 6-methylpicolinic acid, [Co(6-Mepic)2(H2O)2]·2H2O, was prepared and fully determined by single crystal X-ray crystal structure analysis as well as FT-IR, FT-Raman. UV–vis spectra were recorded within different solvents, to illustrate electronic transitions and molecular charge transfer within complex 1. The coordination sphere of complex 1 is a distorted octahedron according to single crystal X-ray results. Moreover, DFT (density functional theory) calculations with HSEH1PBE/6-311 G(d,p) level were carried out to back up the experimental results, and form base for future work in advanced level. Hyperconjugative interactions, intramolecular charge transfer (ICT), molecular stability and bond strength were researched by the using natural bond orbital (NBO) analysis. X-ray and NBO analysis results demonsrate that O−H···O hydrogen bonds between the water molecules and carboxylate oxygen atoms form a 2D supramolecular network, and also adjacent 2D networks connected by C−H···π and π···π interactions to form a 3D supramolecular network. Additionally, the second− and third−order nonlinear optical parameters of complex 1 were computed at DFT/HSEH1PBE/6-311 G(d,p) level. The refractive index (n) was calculated by using the Lorentz−Lorenz equation in order to investigate polarization behavior of complex 1 in different solvent polarities. The first−order static hyperpolarizability (β) value is found to be lower than pNA value because of the inversion symmetry around Co (II). But the second−order static hyperpolarizability (γ) value is 2.45 times greater than pNA value (15×10−30 esu). According to these results, Co(II) complex can be considered as a candidate to NLO material. Lastly molecular electrostatic potential (MEP), frontier molecular orbital energies and related molecular parameters for complex 1 were evaluated.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(4):1417-1423
Reversible crystal-to-crystal transformations of 3D lead(II) coordination polymers with the ligand 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (4-bpdh), from nitrate analoge [Pb(4-bpdh)(NO3)2(H2O)]n (1) to [Pb(4-bpdh)(NO3)(Br)]n (2), [Pb(4-bpdh)(Br)2]n (3), [Pb(4-bpdh)(NO3)(Cl)]n (4) and [Pb(4-bpdh)(Cl)2]n (5) by solid state anion-replacement processes under mechanochemical reactions, have been studied. The reversible solid state structural transformations of compounds 15, by anion-replacement processes under mechanochemical reaction, have been verified by PXRD measurements. Nanoparticles of compounds were synthesized by sonochemical process and characterized by scanning electron microscopy (SEM), powder X-ray diffraction, IR spectroscopy and elemental analyses. The SEM images showed that morphology change occurs during solid state anion-replacements of nanocrystals.  相似文献   

7.
The coordination geometry of Cu(II) complexes with water and ammonia has been studied by four pulse electron spin echo modulation spectroscopy in siliceous (L)Cu-MCM-41 and in aluminum-containing (L)Cu-AlMCM-41 where (L) denotes Cu(II) incorporation by liquid phase ionexchange. An analysis of the proton sum peaks in the echo modulation pattern of the water and ammonia ligands reveals significant differences in the Cu(II) coordination between MCM-41 and AlMCM-41. In the aluminum-containing material (L)Cu-AlMCM-41, Cu(II) coordinates to two molecules of water or ammonia and three framework oxygens in a square-based pyramidal coordination geometry. The base of the pyramid is formed by two adsorbate molecules together with two framework oxygens. A third framework oxygen is located at the apex of the pyramid. The cupric ion site is slightly shifted from the plane of the pyramid base towards the apex resulting in an off-plane position. In the siliceous material (L)Cu-MCM-41, [Cu(H2O)6]2+ and [Cu(NH3)4]2+ complexes are observed. The results of four pulse electron spin echo modulation experiments support a distorted octahedral coordination geometry for the [Cu(H2O)6]2+ complex in (L)Cu-MCM-41.  相似文献   

8.
One new lead(II) coordination supramolecular complex (CSC) (1D), [Pb2(L)2(I)4]n, L = C4H6N2 (1-methyl imidazole), has been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on complex 1 showed that Pb2+ ion is 4-coordinated. Topological analysis shows that the complex 1 is 2,3,5C2 net. Finally, the role of reaction time and temperature on the growth and final morphology of the structures obtained by sonochemical irradiation have been studied.  相似文献   

9.
Two nanoparticles of cadmium(II) coordination polymers (CPs) formulated as [Cd(L)(DCTP)]n (1) and [Cd(L)2(DCTP)·2H2O]n (2) (L = 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2DCTP = 2,5-dichloroterephthalic acid) were prepared by the sonochemical approach in different solvents and characterized by elemental analysis, IR spectra, scanning electron microscopy (SEM), and powder X-ray diffraction. Structural determination reveals that CP 1 displays a 2D four-connected sql net layer, Whilst CP 2 exhibits a 1D “V”-like chain structure. Luminescence properties, thermal behavior, and photocatalytic activities of the nanoparticles of CPs 1 and 2 on the degradation of methylene blue were investigated. The photocatalytic mechanism is carried out by introducing t-butyl alcohol (TBA) as a widely used OH scavenger. Furthermore, the influence of solvents, reaction time, and ultrasound irradiation temperature on the morphology and size of the nanostructure CPs 1 and 2 were investigated. The results indicated that an increase of time and ultrasound irradiation temperature decreased the nanostructured size.  相似文献   

10.
Mixed-ligand Cu(II) and Ni(II) complexes, [Cu(dmit)(bpy)]2 (I), [Ni(dmit)(phen)2] (II) and [Ni(dmit)(phen)2]·CH2Cl2 (III) (dmit=1.3-dithiole-2-thione-4.5-dithiolate, phen=1.10-phenantroline, bpy=2.2′-bipyridine) have been prepared by ligand exchange between phen or bpy and (Bu4N)2[M(dmit)2] (M=Ni, Cu) and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray analysis and by investigation of magnetic and resonance properties. In complex I, the monomeric units form dimers in a head-to-tail arrangement by weak coordination bonds between copper and dithiolate sulfur atoms and π–π interactions between dmit and bpy from neighboring monomers. Dimers in I are further extended into chains by weak Cu–S(thione) contacts. In crystal packing of complex II and III, there exists a weak π–π interaction between two parallel phen molecules of the adjacent complexes. As a consequence, the magnetic and resonance characteristics of copper complex may be described in approximation of exchange-coupled pairs of Cu2+ ions with ion spin S=1/2. The nickel complexes are described by isotropic exchange model for single-site spin S=1.  相似文献   

11.
Two new Cu(II) complexes with Picolinic acid and Tryptophan [Cu(II)(DPTR)(H2O)2](1:1) (1) and [Cu(II)(DPTR)(Phen)] (1:1:1) (2) were synthesized, characterized and studied their DNA binding, cleavage, docking and anti-cancer properties. The molecular modeling studies were carried out with energy minimized structures of metal complexes. CT-DNA binding studies revealed that the complexes bind through an intercalative mode and show good binding propensity. The docking study also confirms the intercalative mode of binding. The hydrolytic DNA cleavage activity of these complexes has been studied using gel electrophoresis. Complex 2 shows better efficiency than 1. Cell viability experiments indicated that the ligand, complexes show significant dose dependent cytotoxicity in selected cell lines.
Graphical Abstract Two new Cu(II) complexes with Picolinic acid and Tryptophan, [Cu(II)(DPTR)(H2O)2](1:1) (1) and [Cu(II)(DPTR)(Phen)] (1:1:1) (2) were synthesized, characterized and studied their DNA binding, cleavage, docking and anti-cancer properties.
  相似文献   

12.
Nanostructures of three Zinc(II) coordination polymers, [Zn(NNO)2(H2O)4]n (1), [Zn(PNNO)2(H2O)2]n (2) and [Zn(H2O)6]·(INNO)2 (3) {NNO: Nicotinic acid N-oxide, PNNO: Picolinic acid N-oxide and INNO: Isonicotinic acid N-oxide}, have been synthesized by a sonochemical process and reaction of ligands with Zn(CH3COO)2. The Zinc(II) oxide nano-particles have been synthesized from thermolysis of [Zn(NNO)2(H2O)4]n (1), [Zn(PNNO)2(H2O)2]n (2) and [Zn(H2O)6]·(INNO)2 (3) at two different methods (with surfactant and without surfactant) and two temperatures (200 and 600 °C). The ZnO nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparison of the SEM images of ZnO nano-particles at two different methods and temperatures shows that higher temperature results in an increasing of agglomeration and thus small and spherical ZnO particles with good separation were produced by thermolysis of compounds at 200 °C and by use of surfactant.  相似文献   

13.
Nanoparticles of a three-dimensional coordination polymer, [Pb(L)(μ2-Br)(H2O)]n (1), (L? = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by an ultrasonic method and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal (DTA) analyses and compared each other. Concentration of initial reagents effects and the role of power ultrasound irradiation on size and morphology of nano-structured compound 1, have been studied. Calcination of the compound 1 at 500 °C under air atmosphere yields Pb3O2Br2 nanoparticles.  相似文献   

14.
Nano-structures of two new Pb(II) two-dimensional coordination polymers, [Pb(μ-4-pyc)(μ-NCS)(μ-H2O)]n (1) and [Pb(μ-4-pyc)(μ-N3)(μ-H2O)]n (2), 4-Hpyc = 4-pyridinecarboxylic acid were synthesized by a sonochemical method. The new nano-structures were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compounds 1 and 2 were structurally characterized by single crystal X-ray diffraction and consist of two-dimensional polymeric units. The thermal stability of compounds 1 and 2 were studied by thermal gravimetric and differential thermal analyses and compared. Pb2(SO4)O and PbO nanoparticles were obtained by calcination of the nano-structures of compounds 1 and 2 at 600 °C, respectively.  相似文献   

15.
A new nano-sized barium coordination polymer, {(bipyH)[Ba2(pydc)2(Hpydc)(H2O)2]}n·nH2O (1), (bipy = 4,4′-bipyridine and H2pydc = pyridine-2,6-dicarboxylic acid), has been sonochemically synthesized and fully characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy, thermogravimetric analysis (TGA) and elemental analyses. Compound 1 was structurally characterized by single crystal X-ray diffraction and it was shown that this compound consists of 1D anionic coordination polymers and bipyH+ cationic species that construct a three-dimensional supramolecular architecture via non-covalent interactions i.e. ion-pairing and hydrogen bonding. The role of compound 1 as a heterogeneous catalyst in the production of biodiesel was also investigated. A full conversion of soybean oil to biodiesel was accomplished in an exceptionally short timeframe through an ultrasonic-assisted transesterification process in the presence of compound 1.  相似文献   

16.
X‐ray absorption fine structure spectra have been investigated at the K‐edge of copper in copper(II) salen/salophen complexes: [Cu(salen)] (1), [Cu(salen)CuCl2].H2O (2), [Cu(salophen)] (3) and [Cu(salophen) CuCl2].H2O (4), where salen2? = N,N′‐ethylenebis (salicylidenaminato); salophen2? = o‐phenylenediaminebis(salicylidenaminato). Complexes 1 and 3 are supposed to have one type of copper centers (called (Cu1)) and complexes 2 and 4 two types of copper centers (called (Cu1) and (Cu2)) having different coordination environments and geometries. A theoretical model has been generated using the available crystallographic data of complex 1 and it has been used for analysis of the extended X‐ray absorption fine structure (EXAFS) data of the four complexes to obtain the structural parameters for (Cu1) center. For this center, the obtained Cu–Cu distance (3.2 Å) verifies the binuclear nature of all the complexes. For determining the coordination geometry around (Cu2) center in 2 and 4, a theoretical model has been generated using the crystal structure of a Cu(II) complex, [Cu(C16H12N2O2Cl2)]. This theoretical model has been fitted to the EXAFS data of 2 and 4 to obtain the structural parameters for (Cu2) center. The present analysis shows that (Cu1) center has square pyramidal geometry involving 2N and 3O donor atoms, whereas (Cu2) center has distorted tetrahedral geometry with 2O and 2Cl donor atoms. The values of the chemical shifts and presence of typical Cu(II) X‐ray absorption near‐edge spectroscopy features suggest that copper is in the +2 oxidation state in all these complexes. The intensity of ls → 3d pre‐edge feature has been used to investigate the geometry and binuclear nature of the complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Two new hydrated monocationic Cu(II) complexes with 1,3-propylenediamine and 1,2-ethylenediamine of general formula [CuBr(N-N)2·H2O]Br were prepared. The complexes were identified by means of several spectroscopic tools (Uv-visible, IR and MS), thermally (TG/DTA) and CHN-elemental analysis. The three dimensional structure for complex A and B was provide by X-ray diffraction studies and showed the Cu(II) ion as 4 + 1 + 1 coordinated, four nitrogen atoms of the diamine ligands, one bromide ion and one H2O semi-coordinated to the Cu(II) center, a typical trans effect is clearly observed in the two complexes. The molecular crystal structures are linked via several H-bonds like N_H…Br and N_H…O. Additionally, intra-molecular H-bonds of kind C_H…Br is observed; these interactions lead to crystal structure three dimensional architecture packing. Hirshfeld surfaces (HSA) analysis was served to figure out the inter-contacts and fingerprints atoms percentage. DNA-binding, antitumor and antibacterial effectiveness of the desired complexes were evaluated.  相似文献   

18.
Two new mercury(II) coordination supramolecular compounds (CSCs) (1D and 0D), [Hg(L)(I)2]n (1) and [Hg2(L′)2(SCN)2]·2H2O (2) (L = 2-amino-4-methylpyridine and L′ = 2,6-pyridinedicarboxlic acid), have been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by field emission scanning electron microscope (FESEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on compounds 1 and 2 show that Hg2+ ions are 4-coordinated and 5-coordinated, respectively. Topological analysis shows that the compound 1 and 2 have 2C1, sql net. The thermal stability of compounds 1 and 2 in bulk and nano-size has been studied by thermal gravimetric (TG), differential thermal analyses (DTA) for 1 and differential scanning calorimetry (DSC) for 2, respectively. Also, by changing counter ions were obtained various structures 1 and 2 (1D and 0D, respectively). The role of different parameters like power of ultrasound irradiation, reaction time and temperature on the growth and morphology of the nano-structures are studied. Results suggest that increasing power ultrasound irradiation and temperature together with reducing reaction time and concentration of initial reagents leads to a decrease in particle size.  相似文献   

19.
Nanoparticles of a new three-dimensional Mn(II) coordination supramolecular compound, [Mn(L)2(H2O)2] (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy and elemental analyses. Structural determination of compound 1 reveals the Mn(II) ion is six coordinated, bonded to two nitrogen atoms, two oxygen atoms from the L ligand and two water molecules. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA) and compared each other. Concentration of initial reagents effects on size and morphology of nano-structured compound 1, have been studied and shows that low concentrations of initial reagents decreased particles size and also leaded to fibrous-like nanostructures morphology. Mn3O4 nano-structure with an octahedral-like morphology were simply synthesized by solid-state transformation of compound 1 at 650 °C.  相似文献   

20.
Three novel lanthanide 1-D chain coordination polymers, namely {[Tb(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·0.5CH3OH·0.5H2O}n (1), {[Dy(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·H2O}n (2) and {[Ce(μ2-L)2(η2-NO3)(H2O)3]·H2O}n (3) (HL=N-benzoyl-N′-(4-benzoxy)thiourea), have been prepared and characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The luminescence properties and themostabilities of polymers 1-3 have been determined as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号