首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrasonic standing waves can be used to generate radiation forces on particles within a fluid. A number of authors have derived detailed representations of these forces but these are most commonly applied using an approximation to the energy distribution based upon an idealized standing wave within a mode based upon rigid boundaries. An electro-acoustic model of the acoustic energy distribution within a standing wave with arbitrary thickness boundaries has been expanded to model the radiation force on an example particle within the acoustic field. This is used to examine the force profile on a particle at resonances other than those predicted with rigid boundaries, and with pressure nodes at different positions. A simple analytical method for predicting modal conditions for combinations of frequencies and layer thickness characteristics is presented, which predicts that resonances can exist that will produce a pressure node at arbitrary positions in the fluid layer of such a system. This can be used to design resonators that will drive particles to positions other than the center of the fluid layer, including the fluid/solid boundary of the layer, with significant potential applications in sensing systems. Further, the model also predicts conditions for multiple subwavelength resonances within the fluid layer of a single resonator, each resonance having different nodal planes for particle concentration.  相似文献   

2.
This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.  相似文献   

3.
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2006,44(Z1):e467-e471
Within an acoustic standing wave particles experience acoustic radiation forces, a phenomenon which is exploited in particle or cell manipulation devices. When developing such devices, one-dimensional acoustic characteristics corresponding to the transducer(s) are typically of most importance and determine the primary radiation forces acting on the particles. However, radiation forces have also been observed to act in the lateral direction, perpendicular to the primary radiation force, forming striated patterns. These lateral forces are due to lateral variations in the acoustic field influenced by the geometry and materials used in the resonator. The ability to control them would present an advantage where their effect is either detrimental or beneficial to the particle manipulation process. The two-dimensional characteristics of an ultrasonic separator device have been modelled within a finite element analysis (FEA) package. The fluid chamber of the device, within which the standing wave is produced, has a width to height ratio of approximately 30:1 and it is across the height that a half-wavelength standing wave is produced to control particle movement. Two-dimensional modal analyses have calculated resonant frequencies which agree well with both the one-dimensional modelling of the device and experimentally measured frequencies. However, these two-dimensional analyses also reveal that these modes exhibit distinctive periodic variations in the acoustic pressure field across the width of the fluid chamber. Such variations lead to lateral radiation forces forming particle bands (striations) and are indicative of enclosure modes. The striation spacings predicted by the FEA simulations for several modes compare well with those measured experimentally for the ultrasonic particle separator device. It is also shown that device geometry and materials control enclosure modes and therefore the strength and characteristics of lateral radiation forces, suggesting the potential use of FEA in designing for the control of enclosure modes in similar particle manipulator devices.  相似文献   

4.
Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size fractionate particles in a moving air stream is described. Separate particle-laden and clean air streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles cause them to move transverse to the flow direction. Since the radiation force is dependent upon the particle size, larger particles move a greater transverse distance as they pass through the standing wave. The outlet flow is then separated into streams, each containing a range of particle sizes. Experiments were performed with air streams containing glass microspheres with a size distribution from 2-22 μm, using a centerline air stream velocity of approximately 20 cm/s. An electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the outlet were compared with the predictions of a theoretical model. Experiments and theory show reasonable correspondence. The theoretical model also indicates an optimal partitioning of the particle-laden and clean air inlet streams.  相似文献   

5.
声操控微粒研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡飞燕  孟龙  李飞  郑海荣 《应用声学》2018,37(5):655-663
声操控微粒是利用声波与微粒之间动量和能量交换产生的声辐射力操纵微粒的运动,具有非接触、生物兼容性好、无需对微粒进行化学生物标记、装置简单易集成等优点,在精密制造、精准医疗等领域具有广阔的应用前景,是当前操控领域的研究热点。该文主要综述最近十年声辐射力理论研究、声场调控方法以及微粒操控形式等方面的研究工作,并对声操控的未来发展方向进行了展望。  相似文献   

6.
王明升  李威 《声学学报》2020,45(1):87-93
通过声散射理论,将水中粒子的Bessel波束声散射场的分波序列(PWS)表达公式加以推广,进而推导出声辐射力的表达公式,获得了液体球及弹性球在Bessel波束下声辐射力的变化规律。通过观察不同散射角形态函数,可发现声辐射力的产生与粒子背向散射抑制程度有关。对于液体球粒子,球壳厚度及材料介质对粒子声辐射力有着重要的影响,同时Bessel波束波锥角越大,产生负声辐射力的可能性越大。对于弹性球和弹性单层壳粒子,声辐射力的产生与其本身的共振特征存在很大的关系。同时,通过改变球壳内介质及壳层厚度的方法,可增加产生的负声辐射力的频率范围及幅值强度.   相似文献   

7.
We investigate single-axis acoustic levitation using standing waves to levitate particles freely in a medium bounded by a driver and a reflector. The acoustic pressure at the pressure antinode of the standing wave counteracts the downward gravitational force of the levitating object. The optimal relationship between the air gap and the driving frequency leads to resonance and hence maximization of the levitating force. Slight deviation from the exact resonance condition causes a reduction in acoustic pressure at the pressure antinodes. This results in a significant reduction of the levitating force. The driving frequency is kept constant while the air gap is varied for different conditions. The optimal air gap for maximizing the levitation force is studied for first three resonance modes. Furthermore, a levitating particle is introduced between the driver and the reflector. The dependence of the resonance condition on the size of the levitating particle as well as the position of the particle between the driver and the reflector has also been studied. As the size of the levitating particle increases, the resonance condition also gets modified. Finite element results show a good agreement with the validated results available in the literature. Furthermore, the finite element approach is also used to study the variation of acoustic pressure at the pressure antinode with respect to the size of the reflector. The optimum diameter of the reflector is calculated for maximizing the levitating force for three resonance modes.  相似文献   

8.
Holwill IL 《Ultrasonics》2000,38(1-8):650-653
Fluid dynamics modelling augmented with routines to simulate acoustic forces on aerosol particles has been used to investigate the potential of combining ultrasonic standing wave fields with optical particle analysis equipment. Simulations of particle dynamics in airstreams incorporating acoustic forces predict that particles in the 1-10 microns diameter range may be effectively focused to the velocity nodes of the standing wave field. Particles move to the velocity nodes within tens of milliseconds for acoustic frequencies of 10-100 kHz and at an acoustic energy density of 100 Jm-3. Larger particles are predicted to move to the velocity antinodes within similar times; however, there is a crossover region at approximately 15-20 microns particle diameter where longer times are predicted due to the competing forces driving particles to the vibration node and antinode. With sufficient transverse flow velocities the models predict that disturbances due to acoustic streaming can be overcome and a useful degree of focusing achieved for the aerosol particles. Results from a model demonstrating sampling and acoustic focusing of 3-9 microns aerosol particles to a 200 microns wide analysis area are presented.  相似文献   

9.
宁效龙  王志章  裴春莹  尹亚玲 《物理学报》2018,67(1):18701-018701
提出了一种基于非线性ZnSe晶体产生的空心光束与光泳力的大尺寸粒子二维囚禁与一维导引、三维囚禁方案.理论上分析并计算了单个非线性ZnSe晶体产生的空心光束内粒子受到的横向与纵向光泳力,纵向光泳力的大小同粒子尺寸与光束尺寸比例的四次方成正比,与空心光束功率成正比,方向与光束传播方向一致.粒子尺寸与空心光束尺寸越接近时,横向光泳力的大小越大.结果表明该光泳力可以实现对大尺寸粒子的二维囚禁,同时可对粒子进行长距离(米量级)一维定向导引;理论上分析并计算了基于双非线性ZnSe晶体产生的局域空心光束内粒子所受横向与纵向光泳力情况,光泳力与系统参数的依赖关系与单个非线性晶体产生的空心光束中的粒子受力情况类似,不同的是该条件下纵向光泳力指向光束中心.结果表明该局域空心光束可以实现大尺寸粒子的三维有效囚禁.基于非线性ZnSe晶体产生的空心光束或者局域空心光束可以作为大尺寸粒子非接触式有效操控的工具,在现代光学以及生物医学中有潜在的应用.  相似文献   

10.
针对圆柱形管道外部的流体与颗粒介质运动问题,提出了结合圆柱周围声辐射力和声流Stokes力的研究方法。从柱体外部声流方程出发,得到影响涡流结构的无量纲参数Rem≥325.27时,外涡最大流速大于内涡最大流速。在此基础上,采用Nyborg的边界滑移速度理论,获得管道外部声流的极限滑移速度,推导得出圆柱附近的声辐射力公式。基于此公式,在理论上推导出颗粒速度为0、声辐射力和声流Stokes力平衡时,颗粒临界直径的表达式。通过对圆柱位于不同位置时,圆柱外部的颗粒运动进行仿真模拟,得到与理论公式相一致的结论:颗粒的临界直径的大小与声波频率有关,当颗粒直径小于临界直径时,声流Stokes力为主导,颗粒随声流运动,颗粒直径大于等于临界直径时,声辐射力为主导,颗粒在声辐射力作用下逐渐向声辐射力的节点聚集。理论与仿真结果表明该方法可用于分析管道外颗粒的分布状态,其研究结果有助于解决电站中换热器的管道结垢、热交换率降低等问题。  相似文献   

11.
12.
A procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach. By leveraging finite elements, and a generalized equation for the acoustic radiation force, channel designs can be investigated in two and three dimensions. Calculations and experimental observations in this report and the literature, confirm these claims.  相似文献   

13.
利用外加声场促进悬浮在气相中的细颗粒发生相互作用,进而引起颗粒的碰撞和凝并,使得颗粒平均粒径增大、数目浓度降低,是控制细颗粒排放的重要技术途径.为探究驻波声场中单分散细颗粒的相互作用,建立包含曳力、重力、声尾流效应的颗粒相互作用模型,采用四阶经典龙格-库塔算法和二阶隐式亚当斯插值算法对模型进行求解.将数值模拟得到的颗粒声波夹带速度和相互作用过程与相应的解析解和实验结果进行对比,验证模型的准确性.进而研究颗粒初始条件和直径对相互作用特性的影响.结果表明,初始时刻颗粒中心连线越接近声波波动方向、颗粒位置越接近波腹点,颗粒间的声尾流效应就越强,颗粒发生碰撞所需要的时间就越短.研究还发现,颗粒直径对颗粒相互作用的影响取决于初始时刻颗粒中心连线偏离声波波动方向的程度.当偏离较小时,颗粒直径越大,颗粒发生碰撞所需要的时间越短;当偏离很大时,直径较小的颗粒能够发生碰撞,而直径较大的颗粒则无法发生碰撞.  相似文献   

14.
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications.  相似文献   

15.
臧雨宸 《计算物理》2020,37(4):459-466
从声波的散射理论出发,利用级数展开法得到高斯波束的波束因子,推导其对阻抗边界下离轴球形粒子声辐射力.针对刚性球与液体球两种球形粒子进行数值模拟,与自由空间的情况进行比较.讨论边界反射系数、粒子与边界距离、束腰半径以及离轴角度与距离等对声辐射力的影响.仿真结果表明:边界反射系数的增大会引起声辐射力的增加,但不改变峰值的位置;在合适的频率处,可以产生负向声辐射力;声辐射力随粒子与边界距离呈周期性变化;束腰半径的影响主要体现在中高频;随着粒子偏离传播轴的距离和角度增大,声辐射力明显衰减.该研究为利用高斯波束实现对粒子的操纵提供理论基础.  相似文献   

16.
Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.  相似文献   

17.
Computer simulation methods are used to study the drift of solid spherical particles suspended in the open channel due to longitudinal oscillations of the gas column. The gas velocity field consists of periodic nonlinear waves and an acoustic flow. The particles move under the action of the Stokes force. Particle distributions in the wave field of the open channel are obtained in the vicinity of the first, second and third eigen-frequencies of the gas column. The particle’s spatial distribution features attributed to the particle’s drift under the action of acoustic radiation are revealed.  相似文献   

18.
A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1 s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics? (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven [1] equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber.  相似文献   

19.
The effect of a wave with a varying traveling component on the bubble activity as well as the physical force generated by microbubbles on a surface has been studied. The acoustic emission from a collection of bubbles is measured in a 928 kHz sound field. Particle removal tests on a surface, which actually measures the applied physical force by the bubbles on that surface, indicate a very strong dependence on the angle of incidence. In other words, when the traveling wave component is maximized, the average physical force applied by microbubbles reaches a maximum. Almost complete particle removal for 78 nm silica particles was obtained for a traveling wave, while particle removal efficiency was reduced to only a few percent when a standing wave was applied. This increase in particle removal for a traveling wave is probably caused by a decrease in bubble trapping at nodes and antinodes in a standing wave field.  相似文献   

20.
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号