首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single bubble sonoluminescence is a process of energy transformation from sound to light. Therefore the motion equations of near spherical vibration of a gas bubble in an incompressible and viscous liquid can be deduced by Lagrangian Equation with dissipation function when the bubble is considered as a vibrator surrounded by liquid. The analytical solutions in the bubble expanding, collapsing and rebounding stages can be obtained by solving these motion equations when some approximations are adopted. And the dynamic behaviors of the bubble in these three stages are discussed.  相似文献   

2.
The collapse of a single cavitation bubble near a gelatin surface, and the interaction of an air bubble attached to a gelatin surface with a shock wave, were investigated. These events permitted the study of the behavior of in vivo cavitation bubbles and the subsequent tissue damage mechanism during intraocular surgery, intracorporeal and extracorporeal shock wave lithotripsy. Results were obtained with high-speed framing photography. The cavitation bubbles near the gelatin surface did not produce significant liquid jets directed at the surface, and tended to migrate away from it. The period of the motion of a cavitation bubble near the gelatin surface was longer than that of twice the Rayleigh's collapse time for a wide range of relative distance, L/Rmax, excepting for very small L/Rmax values (L was the stand-off distance between the gelatin surface and the laser focus position, and Rmax was the maximum bubble radius). The interaction of an air bubble with a shock wave yielded a liquid jet inside the bubble, penetrating into the gelatin surface. The liquid jet had the potential to damage the gelatin. The results predicted that cavitation-bubble-induced tissue damage was closely related to the oscillatory bubble motion, the subsequent mechanical tissue displacement, and the liquid jet penetration generated by the interaction of the remaining gas bubbles with subsequent shock waves. The characteristic bubble motion and liquid jet formation depended on the tissue's mechanical properties, resulting in different damage mechanisms from those observed on hard materials.  相似文献   

3.
《中国物理 B》2021,30(10):104301-104301
The bubble–bubble interaction(BBI) is attractive in most cases, but also could be repulsive. In the present study,three specific mechanisms of repulsive BBI are given. The great contribution to the repulsive BBI is derived from the large radius of the bubble catching the rebound point of the other bubble. For "elastic" bubble and "inelastic" bubble, with the increase of the phase shift between two bubbles, the BBI changes from attractive to repulsive, and the repulsion can be maintained. For both "elastic" bubbles, the BBI alternates between attractive interaction and repulsive interaction along the direction where the ambient radius of one of bubbles increases. For stimulating bubble and stimulated bubble, the BBI can be repulsive. Its property depends on the ambient radii of bubbles. In addition, the distribution of the radiation forces in ambient radius space shows that the BBI is sensitive to the size of bubble and is complex because the bubbles are not of the same size in an ultrasonic field. Finally, as the distance increases or decreases monotonically with time, the absolute value of the BBI decreases or increases, correspondingly. The BBI can oscillate not only in strength but also in polarity when the distance fluctuates with time.  相似文献   

4.
5.
Knowledge on cavitation bubble size distribution, ambient radius of bubbles is of interest for many applications that include therapeutic and diagnostic medicine. It however becomes a hard quest when increasing the ultrasonic frequency, when direct observation of bubble dynamics is no longer possible. An indirect method based on the estimation of the bubble dissolution time under pulsed ultrasound (362 kHz) is used here under optimized conditions to derive ambient radii of cavitation bubbles in water saturated with He, Ar, Xe, O2, N2 and air: 3.0 µm for Ar, 1.2 µm for He, 3.1 µm for Xe, 2.8 µm for O2, around 1 µm for N2 and air. If the pulse on-time is increased, bubble coalescence occurs, the extent of which is rather limited for Ar but extremely high for He or N2.  相似文献   

6.
A powerful experimental approach to measure the size distribution of bubbles active in sonoluminescence and/or sonochemistry is a technique based on pulsed ultrasound and sonoluminescence emission. While it is an accepted technique, it is still lacking an understanding of the effect of various experimental parameters, including the duration of the pulse on-time, the nature of the dissolved gas, the presence of a gas flow rate, etc. The present work, focusing on Ar-saturated water sonicated at 362 kHz, shows that increasing the pulse on-time leads to the measurement of coalesced bubbles. Reducing the on-time to a minimum and/or adding sodium dodecyl sulfate to water allows to reducing coalescence so that natural active cavitation bubble sizes can be measured. A radius of 2.9–3.0 µm is obtained in Ar-saturated water at 362 kHz. The effects of acoustic power and possible formation of a standing-wave on coalescence and measured bubble sizes are discussed.  相似文献   

7.
To detect the echo irradiated by microbubble out from the signal reflected by surrounding tissues, a mother wavelet named bubble wavelet according to the modified Herring oscillation equation was constructed and then applied to the original ultrasound radio frequency signal to perform the wavelet transformation. The transformed wavelet coefficients were extracted by selected threshold values to differentiate the echo of microbubble from signal of surround tissues. The effect of bubble wavelet was compared with other three commonly used mother wavelets by computer simulation and phantom experiment. The results demonstrated that there existed a highly correlation between the bubble wavelet and the experimental echo irradiated by microbubble because bubble wavelet had represented the dynamics of microbubble in advance. Furthermore, the wavelet transform results showed a better signal-noise-ratio and a sharper contrast between the echo of microbubble and the signal of surrounding tissues. Finally, constructi  相似文献   

8.
Using the shaping filter to remove the effects of the bubble pulses ofexplosive charge,we obtained the impulse response function of the sea bot-tom.The result is quite satisfactory.  相似文献   

9.
《Physics letters. A》2002,294(2):95-100
We study the coherent motion of bubbles and spikes in the Richtmyer–Meshkov instability. The theoretical solutions capturing the interplay of harmonics in the nonlinear dynamics are found, and a new type of the evolution of the bubble front is predicted.  相似文献   

10.
We present an optodynamic measurement of a laser-induced cavitation bubble and its oscillations based on a scanning technique using a laser beam-deflection probe. The deflection of the beam was detected with a fast quadrant photodiode which was built into the optical probe. The applied experimental setup enabled us to carry out one- or two-dimensional scanning of the cavitation bubble, automatic control of the experiment, data acquisition and data processing. Shadow photography was used as a comparative method during the experiments.  相似文献   

11.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

12.
Many models have been established to study the evolution of the bubble dynamics and chemical kinetics within a single acoustic cavitation bubble during its oscillation. The content of the bubble is a gas medium that generates the evolution of a chemical mechanism governed by the internal bubble conditions. These gases are described by a state equation, linking the pressure to the volume, temperature and species amounts, and influencing simultaneously the dynamical, the thermal and the mass variation in the cavitation bubble. The choice of the state equation to apply has then a non-neglected effect on the obtained results. In this paper, a comparative study was conducted through two numerical models based on the same assumptions and the same scheme of chemical reactions, except that the first one uses the ideal gas equation to describe the state of the species, while the second one uses the Van der Waals equation. It was found that though the dynamic of the bubble is not widely affected, the pressure and temperature range are significantly increased when passing from an ideal gas model to a real one. The amounts of chemical products are consequently raised to approximately the double. This observation was more significant for temperature and pressure at low frequency and high acoustic amplitude, while it is noticed that passing from ideal gas based approach to the Van der Waals one increases the free radicals amount mainly under high frequencies. When taking the results of the second model as reference, the relative difference between both results reaches about 60% for maximum attained temperature and 100% for both pressure and free radicals production.  相似文献   

13.
When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell–cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell–cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell–cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.  相似文献   

14.
In this paper we investigate the bubble collapse dynamics under shock-induced loading near soft and rigid bio-materials, during shock wave lithotripsy. A novel numerical framework was developed, that employs a Diffuse Interface Method (DIM) accounting for the interaction across fluid–solid-gas interfaces. For the resolution of the extended variety of length scales, due to the dynamic and fine interfacial structures, an Adaptive Mesh Refinement (AMR) framework for unstructured grids was incorporated. This multi-material multi-scale approach aims to reduce the numerical diffusion and preserve sharp interfaces. The presented numerical framework is validated for cases of bubble dynamics, under high and low ambient pressure ratios, shock-induced collapses, and wave transmission problems across a fluid–solid interface, against theoretical and numerical results. Three different configurations of shock-induced collapse applications near a kidney stone and soft tissue have been simulated for different stand-off distances and bubble attachment configurations. The obtained results reveal the detailed collapse dynamics, jet formation, solid deformation, rebound, primary and secondary shock wave emissions, and secondary collapse that govern the near-solid collapse and penetration mechanisms. Significant correlations of the problem configuration to the overall collapse mechanisms were found, stemming from the contact angle/attachment of the bubble and from the properties of solid material. In general, bubbles with their center closer to the kidney stone surface produce more violent collapses. For the soft tissue, the bubble movement prior to the collapse is of great importance as new structures can emerge which can trap the liquid jet into induced crevices. Finally, the tissue penetration is examined for these cases and a novel tension-driven tissue injury mechanism is elucidated, emanating from the complex interaction of the bubble/tissue interaction during the secondary collapse phase of an entrapped bubble in an induced crevice with the liquid jet.  相似文献   

15.
The production of μe-pairs is studied in interactions of neutrinos with nuclei of heavy freon in the SKAT bubble chamber experiment. A rate of μ? e + to charged current interactions above the charm threshold of \(R^{\mu ^ - e^ + } = (4.6 \pm 1.2) \cdot 10^{ - 3} \) is found. The properties of the observed μ? e + events can be well described by assuming them to originate from the semileptonic decay of quasielastic produced charmed baryonsΛ c and inclusive charmedD-meson production. The rates for these reactions are found to be (6.7±3.5)×10?2 and (2.5±0.9)×10?2, respectively. A total charmed particle production rate of (9.2±3.6)×10?2 is calculated.  相似文献   

16.
Formulae for time distribution of neutral kaon decay in material medium are derived and discussed. Essential effects of the medium are emphasized which should be taken into account in the discussion of the bubble chamber experiments in which theS=Q rule and CP-violation are studied.  相似文献   

17.
In this paper, the subcooled flow boiling heat transfer coefficient of pure water, water–ethanol mixture and pure ethanol is determined experimentally in horizontal rectangular channels for various parameters like heat flux, mass flux and channel inlet temperatures. Flow visualization is carried out using high speed camera. The bubble departure diameter, growth period and waiting period of bubbles are determined. Correlations are developed for subcooled flow boiling Nusselt number of water–ethanol mixture based on force balance approach and heat transfer approach. The parameters considered for correlation are grouped as dimensionless numbers by Buckingham π-theorem. The significance of each dimensionless number on heat transfer coefficient is discussed. The correlations developed for subcooled flow boiling heat transfer coefficient are validated with the experimental data. They are found to be in good agreement with the experimental data. It is found that the correlation based on force balance approach predicts the subcooled flow boiling Nusselt number well when compared with that of heat transfer approach correlation.  相似文献   

18.
We present a molecular dynamics simulation of the rupture of a subsurface Ar bubble in Cu(100) and the ejection of Ar atoms and Ar2 dimers. A cavity in the subsurface region was pressurised by inserting Ar atoms until a stability condition was met and the bubble rupture was initiated by the impact of a 200 eV Ar atom. We calculate local temperature and pressure profiles inside the Ar bubble, the angular and energy distributions of emitted Ar atoms and Ar2 dimers and compare with experiments.  相似文献   

19.
Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier–Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller–Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler–Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode.  相似文献   

20.
Ultrasound induced cavitation (acoustic cavitation) process is found useful in various applications. Scientists from various disciplines have been exploring the fundamental aspects of acoustic cavitation processes over several decades. It is well documented that extreme localised temperature and pressure conditions are generated when a cavitation bubble collapses. Several experimental techniques have also been developed to estimate cavitation bubble temperatures. Depending upon specific experimental conditions, light emission from cavitation bubbles is observed, referred to as sonoluminescence. Sonoluminescence studies have been used to develop a fundamental understanding of cavitation processes in single and multibubble systems. This minireview aims to provide some highlights on the development of basic understandings of acoustic cavitation processes using cavitation bubble temperature, sonoluminescence and interfacial chemistry over the past 2–3 decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号