首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

2.
The purpose of this study is to investigate the effects of different extraction methods (hot water-assisted extraction (HWE), microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), and ultrasonic-microwave- assisted extraction (UAME)) on the yield, chemical structures and antioxidant activity of Dictyophora indusiata polysaccharides (DPs). The research results showed that UMAE treatment had greater degree of damage to the cell wall of DPs and better comprehensive antioxidant capacity. Different extraction methods had no obvious effect on the types of glycosidic bonds and sugar rings, similar chemical composition and monosaccharide composition, with different absolute molecular weight (Mw) and molecular conformation. In particular, DPs for UMAE method had the highest polysaccharides yield, which was related to the conformational stretching and degradation avoidance of DPs in the higher molecular weight components under the simultaneous action of microwave and ultrasonic. These findings suggest that the UMAE technology has good potential for modification and application of DPs in the functional food industry.  相似文献   

3.
Ultrasound-assisted extraction (UAE) was applied for polyphenols extraction from Romanian propolis, followed by comparison with previous maceration work. The effects consisted not only in time reduction and extraction yield increase, but also in polyphenolics profile modification in terms of flavonoids / polyphenolic acids ratio. The operating parameters were ultrasounds (US) field exposure time (10–100 min), solvent composition (water, 25 % and 50 % ethanolic solutions, w/w), and liquid:solid ratio (2:1, 4:1 and 6:1, w:w), while keeping temperature constant. 24 polyphenolic derivatives were quantified by UHPLC-HRMS. UAE favored the extraction of pinocembrin, isorhamnetin and chrysin in water and 25 % ethanol, leading to different profiles than maceration, and further influences upon the antioxidant and antimicrobial activity. All extracts demonstrated increased antibacterial and antifungal activity compared to maceration, particularly the 50 % ethanolic extracts, which presented a three-times larger antioxidant capacity. Chemometric methods (Principal Component Analysis – PCA and Partial Least Squares Regression – PLS) and a saturation type model were used to correlate the polyphenolics profiles and antioxidant capacity. Experimental and modelling results concluded that 50 % ethanolic solutions and UAE represent the favorable operating conditions in terms of yield and extracts quality.  相似文献   

4.
Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded < 50% of UAE recovery. UAE does not affect the fatty acids composition (46% C18:1; 22% C16:0; 21% C18:0, 10% C18:2), and triacylglycerol profile (23% POO, 17% POS, 16% SOO, and 14% POP). Interestingly, UAE extracted oil conferred remarkably (P < 0.05) higher antioxidant capacity (IC50 of DPPH 106.60 mg/mL and ABTS 39.80 mg/mL) than SXE (IC50 of DPPH 810.40 mg/mL and ABTS 757.43 mg/mL) or ME (IC50 of DPPH 622.38 mg/mL and ABTS 392.87 mg/mL).  相似文献   

5.
Salvilla is a widely distributed plant used in treatments against gastrointestinal disorders due to its phenolic antioxidant and anti-inflammatory potential. Major yield and quality of bioactive polyphenols must be obtained with no degradation during suitable processes such as Ultrasound-Assisted Extraction (UAE), which allows an efficient extraction of metabolites at appropriate parameter conditions. Salvilla extractions were made using UAE and aqueous ethanolic solutions. Variables used in UAE were sonication time, wave amplitude and percentage of ethanol in solvent. Extracts were tested for total flavonoids, antioxidant activity (ABTS, FRAP and ORAC) and an identification and quantification of phenolic compounds was carried out by UPLC-PDA-ESI-MS/MS. Once elected the better extraction conditions, an anti-inflammatory test was performed for this treatment. As a result, total flavonoids content in extracts was 147 to 288 µg catechin equivalents/mg of dry salvilla extract. All extracts have shown good antioxidant activity (86 to 280 mM Trolox eq/mg dry salvilla extract). Flavonoids contents by chromatography were higher than hydroxybenzoic and hydroxycinnamic acids specially the flavone, flavanol and flavanone groups. Treatment T6 (75% ethanol, 30% amplitude and 10 min extraction time) was the best extract in terms of significant flavonols, antioxidant activity, and higher anti-inflammatory potential.  相似文献   

6.
The extracting technology including ultrasonic and microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomato paste were optimized and compared. The results showed that the optimal conditions for UMAE were 98 W microwave power together with 40 KHz ultrasonic processing, the ratio of solvents to tomato paste was 10.6:1 (V/W) and the extracting time should be 367 s; as for UAE, the extracting temperature was 86.4 °C, the ratio of the solvents to tomato paste was 8.0:1 (V/W) and the extracting time should be 29.1 min, while the percentage of lycopene yield was 97.4% and 89.4% for UMAE and UAE, respectively. These results implied that UMAE was far more efficient extracting method than UAE.  相似文献   

7.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

8.
In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70 °C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC–DAD/MS–MS). Moreover, Naik’s model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR > 98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p < 0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57 ± 0.18 being extracted approximately 88% in the first minute for UAE experiments.  相似文献   

9.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

10.
The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309–317 mg GAE), flavonoids (94–120 mg QE), anthocyanins (8–9 mg CGE), and similar antioxidant activity (2.1–2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630–670 mg GAE) but lower in flavonoids (75–90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave or ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.  相似文献   

11.
The present study optimised the ultrasound-assisted extraction (UAE) of bioactive compounds from Amaranthus hypochondriacus var. Nutrisol. Influence of temperature (25.86–54.14 °C) and ultrasonic power densities (UPD) (76.01–273.99 mW/mL) on total betalains (BT), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA), colour parameters (L*, a*, and b*), amaranthine (A), and isoamaranthine (IA) were evaluated using response surface methodology. Moreover, betalain extraction kinetics and mass transfer coefficients (KLa) were determined for each experimental condition. BT, BC, BX, TP, AA, b*, KLa, and A were significantly affected (p < 0.05) by temperature extraction and UPD, whereas L*, a*, and IA were only affected (p < 0.05) by temperature. All response models were significantly validated with regression coefficients (R2) ranging from 87.46 to 99.29%. BT, A, IA, and KLa in UAE were 1.38, 1.65, 1.50, and 29.93 times higher than determined using conventional extraction, respectively. Optimal UAE conditions were obtained at 41.80 °C and 188.84 mW/mL using the desired function methodology. Under these conditions, the experimental values for BC, BX, BT, TP, AA, L*, a*, b*, KLa, A, and IA were closely related to the predicted values, indicating the suitability of the developed quadratic models. This study proposes a simple and efficient UAE method to obtain betalains and polyphenols with high antioxidant activity, which can be used in several applications within the food industry.  相似文献   

12.
Date seeds from the date palm fruit are considered as a waste and they are known to contain several bioactive compounds. Producing nanoparticles from the date seeds can enhances their effectiveness and their utilization as novel functional food ingredients. In this study, date seed nanoparticles (DSNPs) synthesized using acid (HCl) hydrolysis method (HCl concentration of 38% and hydrolysis time of 4 days) was found to have particle size between 50 and 150 nm. The obtained DSNPs were characterized by measuring particle size and particle charge (Zetasizer), morphology using scanning electron microscope (SEM), and determination of the functional groups using fourier-transform infrared spectroscopy (FTIR). DSNPs were further treated with green extraction technology [ultrasound-assisted extraction (UAE)] using water-based and methanol-based solvent for optimizing the extraction of the bioactive compounds by implementing response surface methodology (RSM). The UAE of DSNPs were analysed for set of responses including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrlthydrazyl (DPPH) radical scavenging activity, ferric ion reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Three-factor and four-factor Box-Behnken design (BBD) of three models (Synthesis of DSNPs, UAE with water, and UAE with methanol) was performed. The results showed that in UAE of DSNPs using water-based solvent, the key independent factors effecting the TPC and TFC and antioxidant activities were S:L ratio (40:1 mg/ml) and treatment time (9 min). Whereas the methanol-based UAE of DSNPs was mostly affected by US amplitude/power (90%) and methanol concentration (80%). All models were further optimized using response optimizer in Minitab and the generated predicted values were very comparable to the actual obtained results which confirm the significance and validity of all RSM models used. The phenolic compounds identified from DSNPs consisted mainly of 3,4-Dihydroxy benzoic acid, ferulic acid, and p-coumaric acid. The present study demonstrated a successful method for synthesising DSNPs as well as documented the optimum UAE conditions to maximize the extraction of polyphenolic compounds from DSNPs and enhancing their antioxidant activities to be used in food application.  相似文献   

13.
An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30–70 °C), extraction time (X2: 25–45 min) and amplitude (X3: 30–50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25–100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.  相似文献   

14.
The present study reports on the extraction of phenolic compounds from sparganii rhizome. Box–Behnken Design (BBD), a widely used form of response surface methodology (RSM), was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ethanol concentration (%), extraction time (min) and solvent-to-material ratio (mL/g) were studied. The results showed that the optimal UAE condition was obtained with an ethanol concentration of 75.3%, an extraction time of 40 min and a solvent-to-material ratio of 19.21 mL/g for total phenols, and an ethanol concentration of 80%, an extraction time of 33.54 min and solvent-to-material ratio of 22.72 mL/g for combination of ρ-hydroxybenzaldehyde, ρ-coumaric acid, vanillic acid, ferulic acid, rutin and kaempferol. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient process as compared to solvent extraction.  相似文献   

15.
Belamcanda chinensis is a common garden herb. The extraction technology of B. chinensis seed oil (BSO) was optimized by ultrasonic-assisted extraction (UAE) method, the composition, relative content of main fatty acids and physicochemical properties of BSO were determined, and the isolation, identification and determination of chemical constituent in BSO residue (BSOR) were also investigated. The optimum process conditions of BSO by UAE were optimized as ultrasound time 14 min, extraction temperature 42℃, the ultrasound power 413 W and the liquid–solid ratio 27:1 mL/g. Under this condition, the extraction yield was 22.32 % with the high contents of linoleic acid and oleic acid in BSO. Ten compounds were isolated and identified from BSOR, and belamcandaoid P (9) was a new compound. The contents of the determined compounds were all at high level in B. chinensis seed. The study provided a certain scientific reference for the comprehensive development and utilization of B. chinensis seeds.  相似文献   

16.
Technical feasibility of an ecofriendly sequential process (ultrasound assisted extraction and reverse osmosis, or UAE and RO) was evaluated in order to obtain a functional Camu-camu (Myrciaria dubia) product with high vitamin C content. Water was used in the assisted extraction by probe ultrasound (UAE) in an experimental design to evaluate different times, amplitudes and temperatures. The best region for total phenolic (TP) and vitamin C (VC) extraction was 5 min, 60 °C and 30% amplitude. Following extraction, the sample was concentrated by reverse osmosis (R25a, 500 Da, polyamide, and 5 bar area 3 ft2), obtaining a relatively low fouling of 19%. At the end of the sequential process (by HPLC-DAD/UV vis), was obtained a concentrated camu-camu (CC) with high Vitamin C (52.01 ± 0.889 mg/g) and cyanidin-3-glucoside, being respectively 7.0 and 4.5 times higher; also the concentration of phenolic compounds was increased by 3.2 times (25.798 mg GAE/g), and anthocyanins in 6.5 times (66.169 mg of cyanidin-3-glucoside/100 g) as well as high antioxidant activity by all three methods evaluated (increased 3.0, 4.6 and 2.38 times for ABTS, DPPH, FRAP, respectively) by comparing the CC with the initial extract (CS). Twenty compounds were identified by UHPLC-QTOF-MS/MS, highlighting quercetin, gallic acid, p- coumaric, ellagic acid and cyanidin-3-glucoside, and at the first time alnusiin was detected in camu-camu. Therefore, the combination of ultrasound assisted extraction and reverse osmosis can be a promising profitable alternative in order to apply bioactive compounds in food, nutraceuticals and cosmetic matrices, bringing their benefits to consumers.  相似文献   

17.
Ultrasound-assisted extraction (UAE) of antioxidant polyphenols from chicory grounds was studied in order to propose a suitable valorization of this food industry by-product. The main parameters influencing the extraction process were identified. A new mathematical model for multi-criteria optimization of UAE was proposed. This kinetic model permitted the following and the prediction of the yield of extracted polyphenols, the antioxidant activity of the obtained extracts and the energy consumption during the extraction process in wide ranges of temperature (20–60 °C), ethanol content in the solvent (0–60% (vol.) in ethanol–water mixtures) and ultrasound power (0–100 W). After experimental validation of the model, several simulations at different technological restrictions were performed to illustrate the potentiality of the model to find the optimal conditions for obtaining a given yield within minimal process duration or with minimal energy consumption. The advantage of ultrasound assistance was clearly demonstrated both for the reduction of extraction duration and for the reduction of energy consumption.  相似文献   

18.
The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercritical fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE.  相似文献   

19.
Passion fruit bagasse is a rich source of phenolic compounds, including piceatannol, a stilbene to which several biological activities are conferred. This work reports the application of pressurized liquid extraction (PLE) assisted by ultrasound (US) to intensify the extraction of phenolic compounds from defatted passion fruit bagasse (DPFB). PLE at different temperatures (65–75 °C) without and with different US powers (240–640 W) was performed to investigate the mechanism of the assisted process. The extracts were evaluated in terms of global, total phenolic (TP), piceatannol and total reducing sugar yields. The antioxidant capacity of the extracts was determined by FRAP and ORAC assays. PLE assisted by US increased the yields, resulting in 60% more TP and piceatannol. The observed yields suggest that the main mechanism driving PLE assisted by US from DPFB was the rise in temperature caused by the ultrasonic waves. Pearson coefficient revealed a strong correlation between antioxidant capacity and total phenolics and piceatannol yield. The three-line spline model was adequately fitted to the experimental curves, showing three extraction periods in which the recovery of TP and piceatannol was higher than 70% at the end of the falling extraction rate period. PLE assisted or not by US showed to be clean, efficient and green alternatives for the recovery of phenolic compounds. The findings of this work indicate that PLE assisted by US has a great potential to improve the extraction of bioactive compounds from natural products.  相似文献   

20.
Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g−1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with “ε” values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the “ε” of the solvents for future metabolomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号