首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound based on-line cleaning for membrane filtration of industrial wastewater was studied. An ultrasonic transducer was assembled in the membrane module in order to get an efficient cleaning of membranes in fouling conditions. The focus of the studies was on the effects of the ultrasound propagation direction and frequency as well as the transmembrane pressure. The more open the membrane was the easier the membrane became plugged by wastewater colloids, when the ultrasound propagation direction was from the feed flow side of the membrane. If the membrane was tight enough, the ultrasound irradiated from the feed side of the membrane increased the flux significantly. However, in the circumstances studied, the power intensity needed during filtration was so high that the membranes eroded gradually at some spots of the membrane surface. It was discovered that the ultrasonic field produced by the used transducers was uneven in pressurised conditions. On the other hand, the ultrasound treatment at atmospheric pressure during an intermission pause in filtration turned out to be an efficient and, at the same time, a gentle method in membrane cleaning. The input power of 120 W (power intensity of 1.1 W/cm2) for a few seconds was sufficient for cleaning. The flux improvement was significant when using a frequency of 27 kHz but only minor when using 200 kHz.  相似文献   

2.
Abstract

Biomedicine and pharmacy identify highly important scientific fields within the present time. However, increased advancements in these sciences have influenced the identification of increased levels in environmental degradation through pollution. Pharmaceutical production has influenced increased scientific and public concern regarding the increasing rate of pollution attributed to high levels of toxicological properties within the products. Pharmaceutical compounds are not fully removed through the integration of wastewater treatment plants (WWTP). This renders pharmaceutical compounds, municipal effluents together with hospitals as the major culprits in the development of the majority of the sources that enhance environmental degradation. A wide range of the compounds have been the identified within WWTP effluents, surface water together with ground and drinking water on a global scale. All above has influenced the research development in technological field developing new ways for efficient removal of pharmaceuticals from wastewater produced from the pharmaceuticals or biomedical industries. This situation may be altered through the utilization of adsorbents. Therefore more studies have been published investigating the use of nanocomposite biomaterials for removing the pharmaceutical compounds existing in biomedical effluents.  相似文献   

3.
Microalgae are a promising feedstock for the production of biofuels, nutraceuticals, pharmaceuticals and cosmetics, due to their superior capability of converting solar energy and CO2 into lipids, proteins, and other valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has gained tremendous interests as an alternative to traditional methods. This review not only summarizes the mechanisms of and operation parameters affecting cell disruption, but also takes an insight into measuring techniques, synergistic integration with other disruption methods, and challenges of ultrasonication for microalgal biorefining. Optimal conditions including ultrasonic frequency, intensity, and duration, and liquid viscosity and sonochemical reactor are the key factors for maximizing the disruption and extraction efficiency. A combination of ultrasound with other disruption methods such as ozonation, microwave, homogenization, enzymatic lysis, and solvents facilitates cell disruption and release of target compounds, thus provides powerful solutions to commercial scale-up of ultrasound extraction for microalgal biorefining. It is concluded that ultrasonication is a sustainable “green” process, but more research and work are needed to upscale this process without sacrificing performance or consuming more energy.  相似文献   

4.
Ultrasonics in food processing   总被引:2,自引:0,他引:2  
In recent years, the physical and chemical effects of ultrasound in liquid and solid media have been extensively used in food processing applications. Harnessing the physical forces generated by ultrasound, in the absence and presence of cavitation, for specific food processing applications such as emulsification, filtration, tenderisation and functionality modification have been highlighted. While some applications, such as filtration and emulsification are "mature" industrial processes, other applications, such as functionality modification, are still in their early stages of development. However, various investigations discussed suggest that ultrasonic processing of food and dairy ingredients is a potential and viable technology that will be used by many food industries in the near future.  相似文献   

5.
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed.In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented.In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater.As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants.The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.  相似文献   

6.
The low-level presence of emerging contaminants (ECs) in the environment has raised a great concern due to their persistence, chronic toxicological, and endocrine disrupting effects on terrestrial and aquatic organisms. Wastewater treatment plants (WWTPs) have become hotspots for the spread of these contaminants to the environment as conventional processes are not efficient in removing them. Thus, the integration of advanced treatment methods within the chain of WWTPs is very essential. In this study, the innovative hybrid process USAMe® which integrates ultrasound irradiation (US), adsorption (A) and membrane filtration (Me) was investigated for the removal of ECs from secondary effluents. Diclofenac, carbamazepine, and amoxicillin were selected due to their large consumption and frequent presence in the aquatic environment. All three ECs were spiked into real secondary wastewater effluent at two concentrations of 10 ppm and 100 ppb. Membrane ultrafiltration and its combination with US (USMe) or adsorption (AMe) were also studied as control tests. The hybrid combination of all the three methods in the USAMe® processes elevated the EC removals to above 99% as compared to only around 90% in the AMe process. All effluents of the hybrid USAMe® processes gave “No Effect” to D. magna, with immobilization of ≤20%. Therefore, results showed that the USAMe® process was efficient in not only removing ECs, but also in generating safe and less toxic treated effluents; thereby displaying its potential as an advanced method for wastewater treatment.  相似文献   

7.
Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Acoustic cavitation, induced by ultrasound, can be used to eliminate organic pollutants from water. This type of ultrasonic treatment of polluted water can be grouped with those generally referred to as advanced oxidative processes since it involves hydroxyl radicals. In this case these highly active species are generated from the dissociation of water and oxygen dissociation caused by cavitation bubble collapse. The cavitation induced degradation rates of organic compounds in water are mainly linked to their vapor pressure and solubility and here we will further explore these links by examining the degradation of a mixture of two materials with different physical properties, chlorobenzene and 4-chlorophenol. The results obtained when a dilute solution of a mixture of these compounds saturated with argon is subjected to sonication at 300 kHz, parallels previous observations achieved in an aerated aqueous medium at 500 kHz. The two compounds exhibit sequential degradation with the more volatile chlorobenzene entering the cavitation bubble and being destroyed first. The 4-chlorophenol degradation occurs subsequently only when the chlorobenzene has been completely destroyed. The two compounds exhibit different behavior when sonicated in water saturated with oxygen. Under these conditions the two compounds are degraded simultaneously, a remarkable result for which two explanations can be proposed, both of which are based on the formation of additional OH radical species: The ability to produce conditions for the simultaneous elimination of two organic compounds by the use of oxygen is of great importance in the developing field of ultrasonic water treatment.  相似文献   

9.
This review focuses on the many contributions of ultrasound technologies for fruit drying toward the United Nations Sustainable Development Goals (SDG). Along this review, several aspects attained from the application of ultrasound technologies are correlated with the SDGs. The main ultrasonic technologies applied for fruit drying, such as ultrasonic bath, probe ultrasound, air-borne ultrasound air-drying, and ultrasound-assisted contact air-drying, are presented. An in-depth discussion on ultrasound contributions, its advantages, disadvantages, and limitations are made. The effects of ultrasound on water diffusivity in several fruits are presented by correlating this effect with drying time and cost of energy. Ultrasound-assisted fruit drying, like other food processing technologies, directly impacts Zero Hunger, but ultrasound technologies contribute to much more than delivering long shelf-life food. This technology can be used to produce healthy foods and provide well-being, which will be discussed by correlating the effects of ultrasound-assisted air-drying with the concentration of nutritional compounds. Ultrasound-assisted fruit drying reduces wastewater toxicity and energy consumption and improves productivity, potentially improving workplaces and salaries. A walk through the technology is presented from Zero Hunger to No Poverty.  相似文献   

10.
Substances such as pharmaceuticals, pesticides, dyes, synthetic and natural hormones, plasticizers, and industrial chemicals enter the environment daily. Many of them are a matter of growing concern worldwide. The use of ultrasound to eliminate these compounds arises as an interesting alternative for treating mineral water, seawater, and urine. Thereby, this work presents a systematic and critical review of the literature on the elimination of organic contaminants in these particular matrices, using ultrasound-based processes. The degradation efficiency of the sonochemical systems, the influence of the nature of the pollutant (volatile, hydrophobic, or hydrophilic character), matrix effects (enhancement or detrimental ability compared to pure water), and the role of the contaminant concentration were considered. The combinations of ultrasound with other degradation processes, to overcome the intrinsic limitations of the sonochemical process, were considered. Also, energy consumptions and energy costs associated with pollutants degradation in the target matrices were estimated. Moreover, the gaps that should be developed in future works, on the sonodegradation of organic contaminants in mineral water, seawater, and urine, were discussed.  相似文献   

11.
The removal of organic compounds from aqueous solutions has been tackled by a novel integrated heterogeneous system. The efficacy of the different systems has been assessed using Fenton-like processes (H2O2/Fe2O3–SBA-15) and phenol as model pollutant. Sono- and photo-Fenton processes separately applied as well as combined systems were studied in order to evaluate of possible beneficial effects on the use of coupled systems. The sequential system evidences an enhancement in terms of phenol and TOC conversions compared to the ultrasound or UV–light irradiation processes. A total phenol degradation and ca. 90% TOC reduction are achieved by sequentially ultrasound followed by UV–visible light irradiation. These effects are ascribed cavitation effect of ultrasound producing a reduction of particle size that provides a higher amount of available active sites due to an increased surface area for the subsequent photo-Fenton system. These encouraging results open new paths for the existing oxidation technologies for potable water and wastewater treatment.  相似文献   

12.
研究了日光/Fenton法对辽河油田采油废水处理效果,并分析了日光/Fenton法好于普通Fenton法的原因。辽河油田采油废水主要含有苯类和烷烃类化合物,日光/Fenton法对辽河油田采油废水处理效果与废水水层高度相关,水层高度升高,COD去除率降低,日光对本油田废水的穿透能力在1 m左右。废水水层高度为40 cm左右时,采油废水经日光/Fenton法处理后,COD由430降至63.2 mg·L-1。通过紫外可见光谱法、红外光谱法(FTIR)及X射线衍射法证明了利用日光/Fenton法处理辽河油田采油废水时体系中有聚铁生成,聚铁的形态与普通Fenton体系生成的聚铁基本相同。同时利用紫外光谱法研究了苯类及烷烃类的转化方式,结果表明: 烷烃类在日光/Fenton和Fenton体系中的转化方式基本相同;而苯类在日光/Fenton体系中的羟自由基作用下转化成具有光敏性的物质。芳香族中间产物的光敏性是日光/Fenton法比普通Fenton法高效的原因。  相似文献   

13.
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.  相似文献   

14.
In this review, the recent applications of power ultrasound technology in improving the functional properties and biological activities of biopolymers are reviewed. The basic principles of ultrasonic technology are briefly introduced, and its main effects on gelling, structural, textural, emulsifying, rheological properties, solubility, thermal stability, foaming ability and foaming stability and biological activity are illustrated with examples reviewing the latest published research papers. Many positive effects of ultrasound treatment on these functional properties of biopolymers have been confirmed. However, the effectiveness of power ultrasound in improving biopolymers properties depends on a variety of factors, including frequency, intensity, duration, system temperature, and intrinsic properties of biopolymers such as macromolecular structure. In order to obtain the desired outcomes, it is best to apply optimized ultrasound processing parameters and use the best conditions in terms of frequency, amplitude, temperature, time, pH, concentration and ionic strength related to the inherent characteristics of each biopolymer. This will help employ the full potential of ultrasound technology for generating innovative biopolymers functionalities for various applications such as food, pharmaceuticals, and other industries.  相似文献   

15.
This work studies the sonochemical degradation of a penicillinic antibiotic (oxacillin) in simulated pharmaceutical wastewater. High frequency ultrasound was applied to water containing the antibiotic combined with mannitol or calcium carbonate. In the presence of additives, oxacillin was efficiently removed through sonochemical action. For comparative purposes, the photo-Fenton, TiO2 photocatalysis and electrochemical oxidation processes were also tested. Therefore, the evolution of the antibiotic and its associated antimicrobial activity (AA) were monitored. A high inhibition was found for the other three oxidation processes in the elimination of the antimicrobial activity caused by the additives; while for the ultrasonic treatment, a negligible effect was observed. The sonochemical process was able to completely degrade the antibiotic, generating solutions without AA. In fact, the elimination of antimicrobial activity showed an excellent performance adjusted to exponential kinetic-type decay. The main sonogenerated organic by-products were determined by means of HPLC-MS. Four intermediaries were identified and they have modified the penicillinic structure, which is the moiety responsible for the antimicrobial activity. Additionally, the possible oxacillin sonodegradation mechanism was proposed based on the evolution of the by-products and their chemical structure. Furthermore, the high-frequency ultrasound action over 120 min readily removed oxacillin and eliminated its antimicrobial activity. However, the pollutant was not mineralized even after a long period of ultrasonic irradiation (360 min). Interestingly, the previously sonicated water containing oxacillin and both additives was completely mineralized using non-adapted microorganisms from a municipal wastewater treatment plant. These results show that the sonochemical treatment transformed the initial pollutant into substances that are biotreatable with a typical aerobic biological system.  相似文献   

16.
Emerging contaminants from wastewater effluent samples were analysed, using posttarget and nontarget analysis techniques. The samples were analysed with an ultra performance liquid chromatograph-time-of-flight mass spectrometer (UPLC-TOF-MS), and the resulting data were processed with commercial deconvolution software. The method works well for posttarget analysis with prior information about the retention times of the compounds of interest. With positive polarity, 63 of 66 compounds and with negative polarity, 18 of 20 compounds were correctly identified in a spiked sample, while two compounds of a total of 88 fell out of the mass range. Furthermore, a four-stage process for identification was developed for the posttarget analysis lacking the retention time data. In the process, the number of candidate compounds was reduced by using the accurate mass of selected compounds in two steps (stages 1 and 2), structure-property relationships (stage 3) and isotope patterns of the analytes (stage 4). The process developed was validated by analysing wastewater samples spiked with 88 compounds. This procedure can be used to gain a preliminary indication of the presence of certain analytes in the samples. Nontarget analysis was tested by applying a theoretical mass spectra library for a wastewater sample spiked with six pharmaceuticals. The results showed a high number of false identifications. In addition, manual processing of the data was considered laborious and ineffective. Finally, the posttarget analysis was applied to a real wastewater sample. The analysis revealed the presence of six compounds that were afterwards confirmed with standard compounds as being correct. Three psycholeptics (nordiazepam, oxazepam and temazepam) could be tentatively identified, using the identification process developed. Posttarget analysis with UPLC-TOF-MS proved to be a promising method for analysing wastewater samples, while we concluded that the software for nontarget analysis will need improvement before it can be used in environmental analytical work with LC-TOF-MS systems.  相似文献   

17.
Nanomaterials and Water Purification: Opportunities and Challenges   总被引:5,自引:0,他引:5  
Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.  相似文献   

18.
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation–hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid.Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip? and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip? carriers (85% ± 10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74% ± 22% and 48% ± 19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3–70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient.  相似文献   

19.
Raw unscoured cotton contains approximately 90% cellulose and various noncellulosic impurities such as waxes, pectins, proteins, and fats. To remove these hydrophobic noncellulosics and produce a highly absorbent fiber that can be dyed and finished uniformly, the greige cotton is traditionally processed with relatively harsh and environmentally unfriendly chemicals. New bio-preparation processes that utilize highly specific enzymes instead of conventional organic/inorganic chemicals are becoming increasingly popular in the textile industry. The major shortcoming of this new technology is that the processing time is much longer than the conventional method. This limitation was overcome by use of ultrasound energy in combination with enzyme processing. The combined enzyme/ultrasound bio-preparation of greige cotton offers significant advantages such as less consumption of expensive enzymes, shorter processing time, better uniformity of treatment and a notable decrease in the amount and toxicity of the resulting textile wastewater effluents.  相似文献   

20.
The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号