首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 16 毫秒
1.
In the littlest Higgs model with T-parity, the heavy photon (A_H) is supposed to be a possible dark matter (DM) candidate. The direct proof of the validity of this model is to produce the heavy photon at an accelerator. In this paper, we study the production rate of e~+ e~- → AH AH at the international e~+ e~- linear collider (ILC) in the littlest Higgs model with T-parity, and show the distributions of the transverse momenta of A H . The numerical results indicate that the heavy photon production rate could reach the 10~-1 fb level at some parameter space, so this could be a good chance to observe the heavy photon via the pair production process with high luminosity at the ILC (500 fb~-1). We know that DM is composed of weakly interacting massive particles, so the interactions with standard model particles are weak. How to detect heavy photons at a collider and distinguish them from other DM candidates are discussed in the final section of the paper.  相似文献   

2.
Within the context of the Littlest Higgs model with T -parity, the heavy photon (AH) is supposed to be an ideal dark matter (DM) candidate. One direct proof of validity of the model is to produce the heavy photon at collider. In this paper, we investigate the associated production of a photon with heavy photon pair at the planned international e+e- linear collider (ILC),i.e., e+e-→ AHAHγ and show the distributions of the transverse momenta of the photon. The numerical results indicate that the heavy photon production rate could reach several fb at the low mass parameter space and the characteristic signal is a single high energetic photon and missing energy, carried by the heavy photons. All in all, it can be a good chance to observe the heavy photon via this process with the high yearly luminosity of the ILC.  相似文献   

3.
We propose a method to improve the secret key rate of an eight-state continuous-variable quantum key distribution(CVQKD) by using a linear optics cloning machine(LOCM). In the proposed scheme, an LOCM is exploited to compensate for the imperfections of Bob's apparatus, so that the generated secret key rate of the eight-state protocol could be well enhanced. We investigate the security of our proposed protocol in a finite-size scenario so as to further approach the practical value of a secret key rate. Numeric simulation shows that the LOCM with reasonable tuning gain λ and transmittance τcan effectively improve the secret key rate of eight-state CVQKD in both an asymptotic limit and a finite-size regime.Furthermore, we obtain the tightest bound of the secure distance by taking the finite-size effect into account, which is more practical than that obtained in the asymptotic limit.  相似文献   

4.
In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretical expression for unifying thermodynamic degradation and self-organizing evolution, and revealed that the entropy diffusion mechanism caused the system to approach to equilibrium. As application, we used these entropy formulas in calculating and discussing some actual physical topics in the nonequilibrium and stationary states. All these derivations and results are unified and rigorous from the new fundamental equation without adding any extra new assumption.  相似文献   

5.
In mathematical physics the main goal of quantum mechanics is to obtain the energy spectrum of an atomic system.In many practices,Schrodinger equation which is a second order and linear differential equation is solved to do this analysis.There are many theoretic mathematical methods serving this purpose.We use Asymptotic Iteration Method(AIM) to obtain the energy eigenvalues of Schrodinger equation in N-dimensional euclidean space for a potential class given as αr~(2d-2)-βr~(d-2).We also obtain a restriction on the eigenvalues that gives degeneracies.Besides,we crosscheck the eigenvalues and degeneracies using the perturbation theory in the view of the AIM.  相似文献   

6.
Spatially explicit models have become widely used in today’s mathematical ecology and epidemiology to study the persistence of populations. For simplicity, population dynamics is often analysed by using ordinary differential equations (ODEs) or partial differential equations (PDEs) in the one-dimensional (1D) space. An important question is to predict species extinction or persistence rate by mean of computer simulation based on the spatial model. Recently, it has been reported that stable turbulent and regular waves are persistent based on the spatial susceptible-infected-resistant- susceptible (SIRS) model by using the cellular automata (CA) method in the two-dimensional (2D) space [Proc. Natl. Acad. Sci. USA 101, 18246 (2004)]. In this paper, we address other important issues relevant to phase transitions of epidemic persistence. We are interested in assessing the significance of the risk of extinction in 1D space. Our results show that the 2D space can considerably increase the possibility of persistence of spread of epidemics when the degree distribution of the individuals is uniform, i.e. the pattern of 2D spatial persistence corresponding to extinction in a 1D system with the same parameters. The trade-offs of extinction and persistence between the infection period and infection rate are observed in the 1D case. Moreover, near the trade-off (phase transition) line, an independent estimation of the dynamic exponent can be performed, and it is in excellent agreement with the result obtained by using the conjectured relationship of directed percolation. We find that the introduction of a short-range diffusion and a long-range diffusion among the neighbourhoods can enhance the persistence and global disease spread in the space.  相似文献   

7.
李政言  谢正伟  陈同  欧阳颀 《中国物理 B》2009,18(12):5544-5551
Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks.Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection,this model successfully predicts most cellular behaviours in growth rate.However,the model ignores the fact that cells can change their cellular metabolic states during evolution,leaving optimal metabolic states unstable.Here,we consider all the cellular processes that change metabolic states into a single term ’noise’,and assume that cells change metabolic states by randomly walking in feasible solution space.By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks,we found that in a noisy environment cells in optimal states tend to travel away from these points.On considering the competition between the noise effect and the growth effect in cell evolution,we found that there exists a trade-off between these two effects.As a result,the population of the cells contains different cellular metabolic states,and the population growth rate is at suboptimal states.  相似文献   

8.
We perform a potential analysis for the holographic Schwinger effect in a deformed AdS5 model with conformal invariance broken by a background dilaton.We evaluated the static potential by analyzing the classical action of a string attached to a rectangular Wilson loop on a probe D3 brane located at an intermediate position in the bulk AdS space.We observed that the inclusion of the chemical potential tends to enhance the production rate,which is opposite to the effect of the confining scale.In addition,we calculated the critical electric field based on the Dirac-Born-Infeld(DBI)action.  相似文献   

9.
For an over-damped linear system subjected to both parametric excitation of colored noise and external excitation of periodically modulated noise, and in the case that the cross-correlation intensity between noises is a time-periodic function,we study the stochastic resonance(SR) in this paper. Using the Shapiro–Loginov formula, we acquire the exact expressions of the first-order and the second-order moments. By the stochastic averaging method, we obtain the analytical expression of the output signal-to-noise ratio(SNR). Meanwhile, we discuss the evolutions of the SNR with the signal frequency, noise intensity, correlation rate of noise, time period, and modulation frequency. We find a new bona fide SR. The evolution of the SNR with the signal frequency presents periodic oscillation, which is not observed in a conventional linear system. We obtain the conventional SR of the SNR with the noise intensity and the correlation rate of noise. We also obtain the SR in a wide sense, in which the evolution of the SNR with time period modulation frequency presents periodic oscillation. We find that the time-periodic modulation of the cross-correlation intensity between noises diversifies the stochastic resonance phenomena and makes this system possess richer dynamic behaviors.  相似文献   

10.
The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号