首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 171 毫秒

1.  利用核模糊聚类和正则化的图像稀疏去噪  
   吴一全  李立《光子学报》,2014年第43卷第3期
   针对目前图像去噪方法噪音抑制不彻底、容易模糊细节等问题,提出了一种利用核模糊C均值聚类和正则化的图像稀疏去噪方法.该方法首先将图像分成大小相同的若干块,并采用核模糊C均值聚类算法对相似的图像块进行聚类,从而保证同一类图像块共享相同的稀疏去噪模型;然后,选择由经典图像库中图像训练而得的全局字典作为初始字典,很好地适应图像的多种特征;接着,对于同一类图像块,通过施加1/2范数正则化约束,实现该类图像块在字典下的稀疏分解,确保分解系数更为稀疏;最后,通过改进的K-奇异值分解算法完成字典的更新,并选择与原稀疏模型差异最大的图像块来替换更新字典的冗余原子,从而有效地去除图像噪音.实验结果表明,与小波扩散去噪法、固定字典去噪法、最优方向去噪法、K-奇异值分解去噪法相比,该方法能更有效地去除图像噪音,保留图像细节,改善图像视觉效果.    

2.  基于可见光的多波段偏振图像融合新算法  被引次数:3
   张晶晶  方勇华《光学学报》,2008年第28卷第6期
   采用了一种新的基于小波变换的偏振图像融合算法.首先,将两个波段中的每一波段三幅偏振图像利用小波变换分解成低频和高频部分,低频的小波系数平均值作为融合后的低频系数,高频细节系数根据不同区域特征选择方法以及对应输入图像小波系数的窗口区域方差来确定融合后高频小波系数,得到一个波段一幅图像.接着,将得到的图像再进行小波分解,采用低频图像的小波系数最小值作为融合后的低频系数,高频图像根据纹理一致性测度的纹理检测确定融合规则,用来调整高频小波系数,将来自不同图像的特征与细节融合在一起,并对融合图像质量进行了对比评价.实验结果表明,融合后的偏振图像不仅反映了场景的偏振信息,而且还包含了丰富的光谱信息,目标与背景的衬比度也得到了增强,为进一步的目标检测和识别提供了便利.    

3.  基于Shearlet变换的自适应图像融合算法  被引次数:3
   石智  张卓  岳彦刚《光子学报》,2013年第42卷第1期
   针对多聚焦图像与多光谱和全色图像的成像特点,结合Shearlet变换具有较好的稀疏表示图像特征的性质,提出了一种新的图像融合规则.并基于此融合规则,提出了基于Shearlet变换的自适应图像融合算法.在多聚焦图像的融合算法中,分别对聚焦不同的图像进行Shearlet变换,并基于本文提出的融合规则,对分解后的高低频系数进行融合处理. 通过与多种算法的比较实验证明了本文提出的算法融合的图像具有更高的清晰度和更加丰富的细节信息.在多光谱和全色图像的融合处理中,提出了一种基于Shearlet变换与HSV变换相结合的图像融合方法.该算法首先对多光谱图像作HSV变换,将得到的V分量与全色图像进行Shearlet分解与融合,在融合过程中对分解系数选用特定的融合准则进行融合,最后将融合生成新的分量与H、S分量进行HSV逆变换产生新的RGB融合图像. 该算法在空间分辨率和光谱特性两方面达到了良好的平衡,融合后的图像在减少光谱失真的同时,有效增强了空间分辨率. 仿真实验证明,本文算法融合的图像与传统的多光谱和全色图像融合算法相比,具有更佳的融合性能和视觉效果.    

4.  基于Contourlet变换的区域特征自适应图像融合算法  被引次数:22
   刘坤  郭雷  常威威《光学学报》,2008年第28卷第4期
   Contourlet变换克服了小波变换在处理高维信号时的不足,比小波变换具有更好的方向性、较高的逼近精度和更好的稀疏表达性能.因此将Contourlet变换应用于图像融合领域,能更好的提取图像边缘特征,为融合提取更多的特征信息.基于Contourlet变换的区域特征自适应图像融合算法是将图像进行Contourlet变换分解后,针对不同的频率域特点选择不同的融合规则,针对高频系数特性选用了区域特征自适应的融合规则,最后通过重构得到融合图像.将基于小波变换的融合算法和本文所提算法进行了主观和客观的对比,结果表明,基于Contourlet变换区域特征自适应的图像融合算法是一种有效可行的图像融合算法.    

5.  基于DTCWT和稀疏表示的红外偏振与光强图像融合  
   朱攀  刘泽阳  黄战华《光子学报》,2017年第46卷第12期
   针对红外偏振与光强图像彼此包含共同信息和特有信息的特点,提出了一种基于双树复小波变换和稀疏表示的图像融合方法.首先,利用双树复小波变换获取源图像的高频和低频成分,并用绝对值最大值法获得融合的高频成分;然后,用低频成分组成联合矩阵,并使用K-奇异值分解法训练该矩阵的冗余字典,根据该字典求出各个低频成分的稀疏系数,通过稀疏系数中非零值的位置信息判断共有信息和特有信息,并分别使用相应的规则进行融合;最后,将融合的高低频系数经过双树复小波反变换得到融合图像.实验结果表明,本文提出的融合算法不仅能较好地凸显源图像的共有信息,而且能很好地保留它们的特有信息,同时,融合图像具有较高的对比度和细节信息.    

6.  计算大规模矩阵最大最小奇异值和奇异向量的两个精化Lanczos算法  
   贾仲孝  张萍《计算数学》,2003年第25卷第3期
   1.引言 在科学工程计算中经常需要计算大规模矩阵的少数最大或最小的奇异值及其所对应的奇异子空间。例如图像处理中要计算矩阵端部奇异值之比作为图像的分辨率,诸如此类的问题还存在于最小二乘问题、控制理论、量子化学中等等。然而大多实际问题中的矩阵是大型稀疏矩阵,且需要的是矩阵的部分奇异对。如果计算A的完全奇异值分解(SVD),则运算量和存储量极大,甚至不可能。因此必须寻求其它有效可靠的算法。 假设A的SVD为    

7.  基于嵌入式多尺度分解和可能性理论的多波段纹理图像融合  
   蔺素珍  王栋娟  王肖霞  朱小红《光谱学与光谱分析》,2016年第7期
   将多尺度变换和“高频取大、低频加权平均”融合规则相结合是融合双波段图像的有效方法。但用该类方法融合多波段图像时,序贯式加权常常会导致原图像间固有的差异信息在融合图像中被弱化,从而影响后续的目标识别和场景理解。该问题在融合具有纹理特征的多波段图像时更为突出。为此,提出了一个基于嵌入式多尺度分解和可能性理论的多波段纹理图像融合新方法。首先,利用一种多尺度变换方法把多波段原图像分别分解为高频和低频成分,并对多波段图像中标准差最大的一幅原图像的低频成分利用另一种多尺度方法进行分块,再以该分块图像的大小和位置为标准对其余波段的原图像进行分块。然后,基于可能性理论的相关融合规则逐一融合对应的多波段块图像,再把块融合图像进行拼接,以拼接结果作为低频融合图像。最后,将该低频融合图像和利用取大规则融合得到的高频成分一起通过多尺度逆变换获得最终的融合图像。这种方法不仅将像素级和特征级融合方法综合在一起,而且将空间域和变换域技术综合在一起,并通过对大小块采用不同融合规则解决了目标边缘的锯齿效应问题。实验表明该方法效果显著。    

8.  基于提升小波的低对比度目标偏振识别技术  
   张肃  付强  段锦  战俊彤  姜会林《光学学报》,2015年第2期
   针对低对比度环境下拍摄目标图像所产生的低识别率问题,提出了一种基于小波提升算法的偏振信息融合方法,该方法采用偏振技术进行目标探测,应用小波提升算法所具有的计算量少、处理速度快等优点将偏振度和偏振角等信息分解为高频和低频部分,分别对高、低频系数采用不同规则进行融合,使得融合后目标边缘轮廓完全从低对比度环境中凸显出来,且细节信息完整、清晰,易于人眼对目标的识别。通过对大量低对比度场景下的目标进行识别及对融合结果进行评价,实验表明,该方法能有效地提高低对比度环境下目标的识别效率,验证了算法的可行性。    

9.  基于分块DCT变换编码的小波域多幅图像融合算法  被引次数:1
   甘甜  冯少彤  聂守平  朱竹青《物理学报》,2011年第60卷第11期
   提出了一种利用DCT变换和小波变换的特征层图像融合算法.其基本思想是先对多幅源图像进行分块DCT变换,选取较大方差对应的变换系数,将图像压缩为原图像大小的1/4,保留系数的对应坐标作为提取信息时的密钥;其次将经处理后的DCT系数直接作为小波变换的分解系数,经小波逆变换后得到融合信息.实验结果表明,该算法实现了多幅不同大小图像的融合,同时单一密钥只能提取单一图像.    

10.  基于稀疏特征的红外与可见光图像融合  
   丁文杉  毕笃彦  何林远  凡遵林  吴冬鹏《光子学报》,2018年第9期
   针对传统的红外与可见光图像融合算法提取目标信息不突出的问题,提出一种基于非下采样剪切波变换和稀疏结构特征的融合方法.首先用非下采样剪切波变换分解源图像;然后通过主成分分析提取低频子带系数中边缘和轮廓等显著特征,引导低频成分融合规则的设计,同时基于结构信息的稀疏性指导融合高频子带系数;最后经过非下采样剪切波变换逆变换得到融合后的图像.实验结果表明,该方法在保留可见光图像背景信息的基础上,突显了红外图像的结构信息,有效提高了融合效果.    

11.  基于局部约束群稀疏的红外图像超分辨率重建  
   邓承志  田伟  陈盼  汪胜前  朱华生  胡赛凤《物理学报》,2014年第63卷第4期
   针对红外图像分辨率低、视觉质量差等问题,提出基于局部约束群稀疏模型的红外图像超分辨率重建方法. 考虑到红外图像的纹理自相似性和原子系数的群结构稀疏性,首先建立了基于局部约束的群稀疏表示模型. 然后,在假定低分辨率图像空间和高分辨率图像空间具有相似流形的前提下,联合局部约束群稀疏表示模型和K-SVD(K奇异值分解)方法,训练得到高低分辨率图像对应的群结构字典对. 最后,通过高分辨字典和对应的红外图像群稀疏表示系数重建得到高分辨率的红外图像. 实验结果表明,本文方法具有更好的超分辨率效果,无论是在客观评价指标还是主观视觉效果方面都有明显的提高. 关键词: 红外图像 超分辨率 群稀疏 字典学习    

12.  基于峰值信噪比和小波方向特性的图像奇异值去噪技术  被引次数:1
   王敏  周磊  周树道  叶松《应用光学》,2013年第34卷第1期
    提出一种利用小波变换子图像不同的方向特性和峰值信噪比进行奇异值分解的图像去噪算法。由于图像经过小波变换后,低频子图像集中了原图像的大部分能量噪声,故仅作简单维纳滤波;而噪声则主要集中在小波域中的三个不同方向的高频子图中,且系数较小,因此可以利用奇异值分解进行去噪处理,即用较大的奇异值和对应的特征向量重构出去噪图像,然而由于奇异值分解固有的行列方向性,对于高频对角线子图重构出的图像去噪效果不理想,故采取旋转至行列方向后再进行常用的奇异值滤波;最后将去噪后的低频和高频子图进行小波反变换重构出最终的去噪图像,其中重构所需的奇异值个数由图像的峰值信噪比确定。 实验结果表明,该方法在有效去噪的同时较好的保留了原有的高频细节信息。    

13.  彩色图像边缘检测及其在图像融合中的应用  被引次数:1
   狄红卫  张文琴《光学技术》,2005年第31卷第3期
   提出了一种新的基于小波变换的彩色图像边缘检测方法,运用噪声和微弱边缘的识别以及动态双域值的选取,使得检测出来的边缘定位精度高,抑制噪声性能好。利用基于区域特征的信息融合策略,比较待融合图像的边缘点的值和区域能量特征值,选择特征突出者对应的原始图像区域组成融合结果。实验结果表明,该算法可以良好地保留两幅图像的细节信息,得到高质量的融合图像。    

14.  基于小波变换与小域特征模糊融合的人脸识别  被引次数:1
   郑德忠  崔法毅《光学技术》,2008年第34卷第6期
   小波变换是一种很好的图像压缩方法,利用小波变换对人脸图像进行三次小波分解,并将低频分量分割成为7个子图像。鉴于人脸上的各小域子图像信息的相互独立性。先利用小域子图像实现软分类,然后使用传统奇异值分解(SVD)法提取出各小域子图像的奇异值(SV),构造出小域奇异值特征向量,给出待识别图像对训练样本图像的隶属度,并采用模糊融合的方法对小域特征进行数据融合,获得识别结果。实验结果表明,该方法实现起来简单、识别速度快,具有很高的识别率。    

15.  基于Contourlet域隐马尔可夫树模型的图像融合算法  被引次数:3
   刘坤  郭雷  陈敬松《光子学报》,2010年第39卷第8期
   针对多尺度几何变换统计信号处理这一领域的优势,提出一种基于Contourlet域隐马尔可夫树模型的图像融合算法.由于Contourlet变换能克服小波变换在处理高维信号时的不足,它比小波变换具有更好的方向性、较高的逼近精度和更好的稀疏表达性能.而隐马尔可夫树模型能有效捕获尺度间、尺度内的Contourlet系数特性.因此将Contourlet域隐马尔可夫树模型应用于图像融合领域,能充分挖掘数据之间的相关性,更好的提取图像边缘特征,为融合提取更多的特征信息.实验结果表明基于Contourlet域隐马尔可夫树图像融合算法获得的融合图像视觉效果良好,是一种有效且可行的融合算法.    

16.  基于非负矩阵分解和IHS颜色模型的偏振图像融合方法  
   周浦城  韩裕生  薛模根  王峰  张磊《光子学报》,2010年第39卷第9期
   针对传统偏振图像伪彩色融合方法存在的不足,提出了一种基于非负矩阵分解和IHS(Intensity Hue Saturation)颜色模型的图像融合方法.首先将偏振信息解析得到的各偏振参量图像作为原始数据集进行非负矩阵分解,得到三幅特征基图像,这些特征基图像包含了场景的大部分偏振信息;然后将三幅特征基图像经直方图匹配之后,分别映射到IHS颜色模型的三个颜色通道,最后变换到RGB颜色空间,得到融合后的图像.实验结果表明,该方法不仅具有较好的色彩表达能力,而且有效地突出了目标的细节信息,提高了图像的可判读性.    

17.  基于非负矩阵分解和IHS颜色模型的偏振图像融合方法  
   周浦城  韩裕生  薛模根  王峰  张磊《光子学报》,2014年第39卷第9期
   针对传统偏振图像伪彩色融合方法存在的不足,提出了一种基于非负矩阵分解和IHS(Intensity Hue Saturation)颜色模型的图像融合方法.首先将偏振信息解析得到的各偏振参量图像作为原始数据集进行非负矩阵分解,得到三幅特征基图像,这些特征基图像包含了场景的大部分偏振信息|然后将三幅特征基图像经直方图匹配之后,分别映射到IHS颜色模型的三个颜色通道,最后变换到RGB颜色空间,得到融合后的图像.实验结果表明,该方法不仅具有较好的色彩表达能力,而且有效地突出了目标的细节信息,提高了图像的可判读性.    

18.  基于最小Hausdorff距离和NSST的遥感图像融合  
   武晓焱  柴晶  刘帆  陈泽华《光子学报》,2018年第2期
   为了最大限度地保留多光谱图像的光谱特性和全色图像的空间细节,提出基于最小Hausdorff距离和非下采样剪切波变换(NSST)的遥感图像融合方法.首先,将原多光谱图像进行主成分分析(PCA)获得其第一主分量,选择NSST对第一主分量和全色图像分别进行分解,得到相应的低频子带系数和高频子带系数.其次,对低频子带系数采用基于稀疏表示的融合策略,稀疏系数与区域空间频率相结合,根据区域空间频率选择权值,对稀疏系数进行加权;对于高频子带系数充分考虑其邻域系数相关性,提出采用最小Hausdorff距离表征相应区域相关性,根据相关性不同采用不同的融合策略.最后,对融合系数进行NSST逆变换得到融合后的第一主分量,再将新的第一主分量与其他高阶主分量进行PCA逆变换得到融合图像.选择三组QuickBird卫星图像和一组SPOT卫星图像进行测试,与传统的融合策略算法相比,本文方法获得的融合结果客观评价指标更优,且主观视觉效果更好.    

19.  基于Contourlet域隐马尔可夫树模型的图像融合算法  
   刘坤  郭雷  陈敬松《光子学报》,2014年第39卷第8期
   本文提出一种基于Contourlet域隐马尔可夫树(HMT)模型的图像融合算法。由于Contourlet变换能克服小波变换在处理高维信号时的不足,它比小波变换具有更好的方向性、较高的逼近精度和更好的稀疏表达性能。而HMT模型能有效捕获尺度间、尺度内的contourlet系数特性。因此将Contourlet域HMT模型应用于图像融合领域,能充分挖掘数据之间的相关性,更好的提取图像边缘特征,为融合提取更多的特征信息。实验结果表明本文的算法获得的融合图像视觉效果良好,是一种有效且可行的融合算法。    

20.  基于K-SVD和残差比的低信噪比图像稀疏表示去噪算法  
   张晓阳  柴毅  李华锋《光学技术》,2012年第38卷第1期
   针对低信噪比图像去噪问题,提出了一种基于K-SVD(Singular Value Decomposition)和残差比(Residual Ratio Iteration Termination)的正交匹配追踪(Orthogonal Matching Pursuit,OMP)图像稀疏分解去噪算法。该算法利用K-SVD算法将离散余弦变换(Discrete cosine transform,DCT)框架产生的冗余字典训练成能够有效反映图像结构特征的超完备字典,以实现图像的有效表示。然后以残差比作为OMP算法迭代的终止条件来实现图像的去噪。实验表明,该算法相对于传统基于Symlets小波图像去噪、基于Contourlet变换的图像去噪,以及基于DCT冗余字典的稀疏表示图像去噪,能够更加有效地滤除低信噪比图像中的高斯白噪声,保留原图像的有用信息。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号