首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Raman investigations of the crystal lattice dynamics in classical ferroelectric perovskites SrTiO3, PbTiO3, and BaTiO3 have been analyzed. The specific features revealed in the behavior of soft modes during the phase transitions occurring in ceramics and powders of these compounds, as well as in several related solid solutions, have been described. Particular attention has been paid to the investigations of ferroelectric thin films and superlattices in which the sequences of structural distortions can be radically different from those known for the initial bulk materials.  相似文献   

2.
The specific features of diffuse X-ray scattering in BaTiO3, KNbO3, and PbTiP3 perovskite crystals have been investigated. The former two perovskite compounds in cubic, tetragonal, and orthorhombic phases exhibit anomalous sheets due to diffuse X-ray scattering, whereas no similar sheets are observed in the case of diffuse X-ray scattering in PbTiO3. For these compounds, the phonon spectra are calculated in the quasi-harmonic approximation within the polarizable-shell model, and the mechanism of stabilization of the soft mode above the temperature of the phase transition to the ferroelectric state is considered. It is demonstrated that, in the cubic phase of BaTiO3 and KNbO3 crystals, there exist quasi-one-dimensional “soft” modes of vibrations of ions in M-O-M-O- chains, where M = Ti or Nb. In PbTiO3, this feature of the soft mode has not been revealed. The pair correlation functions of simultaneous atomic displacements in BaTiO3, KNbO3, and PbTiO3 are determined and used to calculate the intensity of diffuse X-ray scattering. The results obtained are in good agreement with experimental data. This is a strong argument in support of the hypothesis that the specific features of diffuse scattering are associated with the existence of quasi-one-dimensional correlations of atomic displacements in the soft optical mode and that the ferroelectric transition in perovskites is a displacive ferroelectric phase transition. The possible influence of the specific features revealed in the phonon spectra of the perovskite crystals on the processes of nuclear magnetic resonance and X-ray absorption (extended X-ray absorption fine structure spectra) is briefly discussed.  相似文献   

3.
A method has been proposed for calculating Born effective charges in compounds with a cubic perovskite structure. The method is based on the first-principles calculation of individual contributions from the short-range interaction and the intercell dipole-dipole interaction to the Born tensor Z ii (s) for crystalline dielectrics. It has been shown that the contribution from the short-range interaction Z ii sr (s) to the Born tensor components can be derived from ab initio calculations performed for polyatomic clusters. The results of the calculations of the short-range interactions Z ii sr (s) for the cubic phases of the BaTiO3, SrTiO3, CaTiO3, PbTiO3, BaZrO3, PbZrO3, KNbO3, and KTaO3 compounds with the use of the electronic structure calculations within the Hartree-Fock approximation and the density functional theory are presented. For the BaTiO3, SrTiO3, CaTiO3, PbTiO3, KNbO3, and KTaO3 compounds, the components of the complete Born tensor have been also calculated. The obtained values of Z ii (s) are in good agreement with the results of the calculations in terms of the linear response theory and the Berry phase approach.  相似文献   

4.
Taku Onishi 《Molecular physics》2014,112(3-4):533-538
At room temperature, cubic SrTiO3 perovskite exhibits only paraelectric property, although ferroeletric properties appear in tetragonal BaTiO3 and PbTiO3. In this study, the new high-performance ferroelectric such as SrTiO2C perovskite was theoretically designed. Cluster model calculations based on hybrid density functional theory were performed to clarify a ferroelectric mechanism of SrTiO2C. It has been concluded that SrTiO2C can be utilised for a ferroelectric material of a high-speed memory, due to the extremely small polarisation-inversion energy.  相似文献   

5.
Y. Zhou 《Solid State Communications》2010,150(29-30):1382-1385
I studied theoretically the enhancement of remanent polarization and dielectric permittivity of interfacial-coupled ferroelectric superlattices based on the Landau–Ginzburg theory. Our model adopts the Landau–Khalatnikov equation to describe hysteresis behavior and takes the time-dependent space-charge-limited conductivity into account to investigate the ferroelectric and dielectric properties of ferroelectric superlattices. The results are in good agreement with recent experimental observations on the enhancement of remanent polarization and permittivity of BaTiO3/SrTiO3 superlattices and heterolayered Pb(Zr,Ti)O3 thin films.  相似文献   

6.
J.H. Qiu 《Solid State Communications》2010,150(23-24):1052-1055
Based on a phenomenological thermodynamical theory, the effect of the domain wall on the dielectric properties of the polydomain BaTiO3/SrTiO3 superlattices with 180° electric domains in the BaTiO3 layer is investigated. Theoretical analysis indicates that complete polarization suppression and the largest dielectric response take place at approximately 72% and 53% of the critical volume fraction of the SrTiO3 layer for the domain wall energy parameter A=3×107 and 5×107, respectively. The dielectric properties largely depend on both the volume fraction of the SrTiO3 layer and the domain wall energy parameter. Moreover, the gigantic dielectric response which occurs in single-domain BaTiO3/SrTiO3 superlattices cannot appear due to the 180° polydomain state in the BaTiO3 layer, which is in agreement with the previous prediction. The high domain wall energy parameter results in the stabilization of the paraelectric state in the BaTiO3 layer, however, the enhancement of the domain wall energy parameter within a certain scale increases the dielectric properties greatly.  相似文献   

7.
Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides  相似文献   

8.
It is shown that the intercell dipole-dipole (polarization) interaction lowers the frequencies of the polar transverse-optical (TO) lattice vibrational modes (to a greater extent, the larger the corresponding dipole oscillator strengths) and can be a cause of ferroelectric instability in crystals. A model-independent method for determining the frequencies, eigenvectors, and dipole oscillator strengths of all the polar TO modes for a crystal with a suppressed polarization interaction from the known values of these quantities for the corresponding real crystal is proposed. The results of the corresponding calculations for several compounds with perovskite structure (SrTiO3, BaTiO3, KTaO3, KNbO3, and KCoF3) and rutile structure (TiO2, SnO2, SiO2, CoF2, and NiF2) are presented, and the nature of the ferroelectric soft mode in oxides with crystal structures of these two types is discussed. Fiz. Tverd. Tela (St. Petersburg) 39, 687–693 (April 1997)  相似文献   

9.
X-ray diffraction measurements showed that in the surface layer of perovskite structure BaTiO3, SrTiO3, PbTiO3 and KNbO3 crystals at elevated temperatures (500–1000°C) reactions take place in the solid phase, associated with segregation in the direction to the surface of AO complexes, leading to the formation of a whole homologue series of crystalline compounds with the general formula AO · (ABO3) n ,n = l, 2,....., 10, Lowered oxygen partial pressure may inhibit the segregation processes and in the range of temperatures for which vaporisation of the AO complexes from the surface does not yet take place a suitable choice of oxygen pressure may lead to resynthesis of the compound.  相似文献   

10.
The phonon spectrum; crystal structure of the polar phase; spontaneous polarization; dielectric constant, piezoelectric, and elastic moduli tensors for free_standing and substrate_supported superlattices mBaTiO3/nSrTiO3 (with m = n = 1–4) were calculated within the density functional theory. The simulation of properties of the disordered Ba0.5Sr0.5TiO3 solid solution using two special quasirandom SQS-4 structures and their comparison with the properties of the superlattices revealed a tendency of the BaTiO3-SrTiO3 system to superstructure ordering and showed that the superlattices are thermodynamically quite stable. The ground state of the free-standing superlattice corresponds to the monoclinic polar phase Cm, which transforms to the tetragonal polar phase P4mm under in-plane compressive strain of the superlattice and to the orthorhombic polar phase Amm2 under in-plane tensile strain. With a change in the in-plane lattice parameter, in the vicinity of boundaries between neighboring polar phases, some optical and acoustic modes soften and some components of the static dielectric constant, piezoelectric, and elastic moduli tensors diverge critically.  相似文献   

11.
Interatomic potentials are determined in the framework of the nonlinear oxygen polarizability model to describe the structural behavior of KNbO3 and BaTiO3 as a function of temperature. To this purpose, the adiabatic potential is evaluated for different ferroelectric distortions and the model potential parameters are improved by comparing with total energies from full-potential LMTO calculations. Phonon dispersion curves are computed to test if the model reproduces the pronounced two-dimensional character instabilities found by first-principles lattice dynamics using a linear response approach. Finally, the phase diagram for KNbO3 is obtained through a constant-pressure molecular dynamics simulation.  相似文献   

12.
We discuss the origin of the intrinsic visible band emission of ABO3 perovskite oxides (so-called ‘green luminescence’) which remains a topic of high interest during the last quarter of the century. We present a theoretical calculation modelling of this emission in the framework of a concept of charge transfer vibronic excitons [Phys. Solid State, 40 (1998) 834], i.e. as a result of radiative recombination of correlated (bound) self-trapped electron and hole polarons in the highly polarizable ABO3-type matrix. The Intermediate Neglect of Differential Overlap method combined with the Large Unit Cell periodic defect model was used for quantum chemical calculations and theoretical simulation of the green emission for a series of model ABO3 perovskites. The ‘green’ luminescence energies for PbTiO3, SrTiO3, BaTiO3, KNbO3 and KTaO3 perovskite-type crystals agree well with those experimentally observed earlier.  相似文献   

13.
Properties of (BaTiO3)1/(BaZrO3) n ferroelectric superlattices (SLs) with n = 1?7 grown in the [001] direction are calculated from first principles within the density functional theory. It is revealed that the quasi-two-dimensional ferroelectricity occurs in these SLs in the barium titanate layers with a thickness of one unit cell; the polarization is oriented in the layer plane and weakly interacts with the polarization in neighboring layers. The ferroelectric ordering energy and the height of the barrier separating different orientational states of polarization in these SLs are sufficiently large to provide the formation of an array of independent polarized planes at 300 K. The effect of the structural instability on the properties of SLs is considered. It is shown that the ground state is a result of simultaneous condensation of the Γ15 polar phonon and phonons at the M point (for SLs with even period) or at the A point (for SLs with odd period); it is a polar structure with out-of-phase rotations of the octahedra in neighboring layers, in which highly polarized layers are spatially separated from the layers with strong rotations. The competition between the ferroelectric and structural instabilities in biaxially compressed SLs manifests itself in that the switching on of the octahedra rotations leads to an abrupt change of the polarization direction and can cause an improper ferroelectric phase transition to occur. It was shown that the experimentally observed z-component of polarization in the SLs can appear only as a result of the mechanical stress relaxation.  相似文献   

14.
Epitaxial SrTiO3 thin films were deposited on single crystalline Rh substrates by pulsed laser deposition. The tetragonally stained structure of the SrTiO3 thin films with a c/a ratio of 1.04 was confirmed by x-ray diffraction experiments. The SrTiO3 thin films exhibited good ferroelectric properties with a high remanent polarization (2Pr) of 8 μC/cm2 and a canonical ferroelectric piezoresponse hysteresis loop at room temperature. We estimated a high activation electric field of about 6.4 MV/cm for domain wall creeping. This activation electric field is higher than that of typical ferroelectric materials such as PbTiO3.  相似文献   

15.
Xray Absorption Fine Structure (XAFS) measurements of the local atomic structure of perovskite crystals undergoing various structural phase transitions are summarized and discussed. The results show that the local structure of crystals undergoing ferroelectric antiferroelectric and antiferrodistortive transitions is distorted in a disordered fashion far above the transition to the high symmetry phase. The size of the distortions is a large fraction of the distortion at temperatures far below T c. Based on these results we propose a model of ferroelectricity which accounts quantitatively for the temperature dependence of the dielectric function the soft mode frequency, the imaginary part of the dielectric constant and the central peak in PbTiO3 and KNbO3.  相似文献   

16.
In order to understand well the different ferroelectric behaviour of quantum paraelectrics and ferroelectrics and the origin of the ferroelectricity of the solid solution KTa0.5Nb0.5O3(KTN),we calculated the electronic structure of CaTiO3,BaTiO3 and KTN by first principles calculation.From total energy analysis,it is shown that,with increasing cell volume,the crystals (CaTiO3,SrTiO3) will have a ferroelectric instability.For BaTiO3,the ferroelectricity will disappear as the cell volume is decreased.From the density of states analysis,it is shown that the hybridization between B d and O p is very important for the ferroelectric stability of ABO3 perovskite ferroelectrics.This is consistent with the analysis of band structure.  相似文献   

17.
Based on the phenomenological Landau-Devonshire theory, we investigate the film thickness dependence of ferroelectric and electro-optic properties of epitaxial BaTiO3 thin films grown on SrTiO3 and MgO substrates. By using the effective substrate lattice parameter concept, the film thickness dependence of misfit strain is incorporated into the theory. Therefore, the film thickness dependence of ferroelectric and electro-optic properties in epitaxial BaTiO3 thin films can be explained. Moreover, a large quadratic electro-optic effect was obtained in the BaTiO3 thin films, which is in good agreement with the experimental result of BaTiO3 thin films on the MgO substrate.  相似文献   

18.
The Hartree-Fock formalism and density functional theory are used in first-principles calculations of the Landau-Ginzburg free-energy expansion coefficients in the Devonshire-Barrett one-ion model for BaTiO3, PbTiO3, and KNbO3. The Curie temperature T 0 and the Curie-Weiss constant are calculated. The effect of quantum fluctuations on T 0 is considered in the approximation of the first quantum correction to the free energy. The quantum shift of the Curie temperature ΔT 0 quant for BaTiO3, PbTiO3, and KNbO3 and the isotopic shift ΔT 0 iso for barium titanate due to the substitution 48Ti → 46Ti or 48Ti → 50Ti are calculated.  相似文献   

19.
The local atomic structure of PbTiO3, BaTiO3, and KNbO3 perovskite-type crystals and K x Na1 ? x NbO3 solid solutions in different phases is investigated using the angular dependence of the pre-edge structure of the Ti and Nb K X-ray absorption spectra and the EXAFS data. In noncubic phases, a considerable deviation of the local structure from the structure determined from diffraction data is observed only for the tetragonal phase of the BaTiO3 crystal. It is revealed that, in the cubic phase of niobates, the niobium atoms are characterized by significant displacements from the centrosymmetric positions along the threefold axes, so that they are close in the magnitude and the direction to the displacements in the low-temperatures rhombohedral phases.  相似文献   

20.
First-principles density functional theory is used to calculate the phonon spectrum in the paraelectric phase, the ground-state structure and polarization distribution in the polar phase, and energies of ferro- and antiferroelectrically ordered phases of free-standing (KNbO3)1(KTaO3) n ferroelectric superlattices with n = 1–7. It is established that quasi-two-dimensional ferroelectricity with polarization oriented in the layer plane, which weakly interacts with polarization in neighboring layers, appears in potassium niobate layers with a thickness of one unit cell in the superlattices. The possibility of using of such ferroelectric superlattices as a medium for three-dimensional information recording is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号