首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This communication presents new data on phosphorus-containing centers in synthetic diamonds grown in the P–C system by high-pressure high-temperature (HTHP) method and annealed in the temperature range of 2,073–2,573 K. The electron paramagnetic resonance (EPR) study has shown that as-grown at 1,873 K diamonds contain single substitutional nitrogen (P1) and single substitutional phosphorus (MA1) centers. The main part of the spin density in the MA1 center locates on the carbon atom C1 separated from phosphorus by one carbon atom. HPHT annealing (7 GPa, 2,073–2,273 K) results in aggregating substitutional nitrogen and phosphorus atoms. On the first step of annealing (2,073 K) of as-grown diamonds nitrogen–phosphorus NIRIM8 (NP1) centers are created. It is supposed that nitrogen and phosphorus atoms in this center are separated by two carbons. Further temperature increasing shifts the nitrogen atom toward phosphorus and creates two new nitrogen–phosphorus centers NP2 and NP3 with the supposed structures C1–N–C–P and N–P–C1, respectively. The main part of the spin density in MA1, NIRIM8 (NP1), NP2 and NP3 is located on the carbon atom C1. Annealing these samples in the temperature range of 2,073–2,273 K has shown vanishing of NIRIM8 and increasing of NP2 and NP3 centers. HPHT annealing of diamonds at 2,573 K significantly changes the electron paramagnetic resonance (EPR) spectra: all previous nitrogen–phosphorus centers disappear and two new phosphorus centers NP4 and NP5 are created. Features of these centers are g ≈ 2.001 and high spin density located on the phosphorus atoms. The NP5 center is sensitive to X-ray irradiation and low-temperature annealing. The EPR spectra of both these centers are due to the hyperfine structure of one phosphorus atom. The structures of all phosphorus-containing centers are discussed.  相似文献   

2.
The well-known diamond electron paramagnetic resonance (EPR) OK1 and N3 defects are discussed in the context of incorporation of heavy metal, supposedly Ti, in the double semivacancy and substitutional structures, respectively. X-ray phase analysis of inclusions of the growth medium, eclogite, in the diamonds under study shows an atypically high concentration of titanium compounds. To support proposed models, the hyperfine structure (HFS) from 13C in the OK1 center has been analyzed more precisely. The data obtained are consistent with attributing additional satellites around the main EPR lines to HFS from 47Ti and 49Ti. A double semivacancy model describes the directions of g and A tensor components of the OK1 center. The features of infrared and photoluminescence spectra related to the OK1/S1 and N3/440.3 nm centers are presented.  相似文献   

3.
彩色金刚石中过渡金属离子的谱学研究   总被引:5,自引:0,他引:5  
过渡金属镍、钴和铁是高温高压法合成金刚石的常用触媒,已有研究表明:采用镍、钴作触媒所合成的金刚石中存在镍、钴离子,部分天然金刚石含有镍离子;镍、钴离子以替代方式或间隙形式进入金刚石的晶格,并能与杂质氮形成复合体。为了探寻彩色金刚石中过渡金属离子存在的谱学标志,确定镍、钴离子在彩色金刚石中的赋存状态,文章对6颗彩色天然与合成金刚石进行了扫描电镜-能谱、显微红外光谱、光致发光谱、电子顺磁共振谱(EPR)等测试研究。结果表明天然与合成的样品都具有与镍、钴有关的发光中心与EPR结构:包括西澳的蓝灰色天然金刚石中与镍有关的884.6 nm等发光中心,以及天然变色金刚石中与钴有关的发光中心。对各种谱学测试结果的综合分析,得出样品中存在镍、钴离子并与杂质氮形成各种Ni-N或Co-N复合体的结论,其中在天然金刚石中发现钴离子在该领域研究中尚属首次。  相似文献   

4.
Electron paramagnetic resonance (EPR) of Ho3+ single ions and Ho3+?Mg2+-vacancy-Ho3+ associates in holmium-doped forsterite single crystals are studied at 9.4, 37.3 and 65–250 GHz. Crystals were grown from melt by the Czochralski technique in slightly oxidizing atmosphere. For both centers, directions of the principal magnetic axes and parameters of the effective spin Hamiltonians describing dependences of electron-nuclear levels on applied magnetic field are obtained. For Ho3+ substituting Mg2+ in the M2 site as the single ion and for Ho3+ ions in dimer centers, values of crystal field parameters related to a real crystal lattice structure are estimated in the framework of the exchange charge model. The calculated crystal field energies, values of theg-factors of the ground Ho3+ quasi-doublet and the directions of the corresponding magnetic moments agree satisfactorily with the data obtained from measurements of EPR and optical absorption and site-selective luminescence spectra.  相似文献   

5.
We present the results of the study of the elemental composition and defects of the electronic structure of the surface layer modified by high-dose irradiation (1018–1019 ion/cm2) of highly oriented pyrolytic graphite (UPV-1T) by 30-keV N 2 + and Ar+ ions in the temperature range from 180 to 400°C. The EPR spectra observed during irradiation with argon ions at high temperatures and with nitrogen ions at temperatures near the liquid-nitrogen temperature T = 77 K exhibit anomalously narrow lines which probably result from the exchange interaction inside paramagnetic clusters of displaced carbon atoms. During nitrogen ion irradiation at room and higher temperatures, paramagnetic defects typical of many carbon materials (single EPR lines with g = 2.0027–2.0029) and belonging to carbon atoms bound to one or three nitrogen atoms were detected.  相似文献   

6.
EPR spectra of a CaF2 single crystal that was grown from melt containing a small addition of NdF3 were studied. Signals corresponding to tetragonal centers of Nd3+ ions and cubic centers of Er3+ and Yb3+ ions were found. Superhyperfine structure (SHFS) in the spectra of the Nd3+ ions was observed for the first time in this crystal; parameters of the superhyperfine interaction of the Nd3+ ions with the nearest nine fluorine ions were determined. The dependence of the resolution of the Nd3+ EPR spectrum SHFS on the incident microwave power at the temperature of T ≈ 6 K was studied. Obtained results are discussed and compared with the literature data.  相似文献   

7.
New method for the detection of magnetic resonance signals versus temperature is developed on the basis of the temperature dependence of the spin Hamiltonian parameters of the paramagnetic system under investigation. The implementation of this technique is demonstrated on the nitrogen-vacancy (NV) centers in diamonds. Single NV defects and their ensembles are suggested to be almost inertialess temperature sensors. The hyperfine structure of the 14N nitrogen nuclei of the nitrogen-vacancy center appears to be resolved in the hyperfine structure characteristic of the hyperfine interaction between NV and an N s center (substitutional nitrogen impurity) in the optically detected magnetic resonance spectra of the molecular NV-N s complex. Thus, we show that a direct evidence of the two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N s pairs was observed. It is shown that more than 3-fold enhancement of the NV optically detected magnetic resonance signal can be achieved by using water as a collection optics medium.  相似文献   

8.
Two different samples of natural zeolite have been investigated by X-band electron paramagnetic resonance (EPR) spectroscopy. The observed EPR spectra are typical to those observed for Fe3+ and Mn2+ ions. The lines, related to the iron, are observed, respectively at g≈4.3 and g≈2. The observed six lines, at g≈2, are the hyperfine structure due to the Mn2+ ions. The simulation of the experimental EPR spectra suggests that both of the manganese and the iron are present in more one site. The temperature dependence of the EPR spectra has been also investigated. The nature of the different sites involved in the EPR absorption is discussed.  相似文献   

9.
Diamond single crystals synthesized from powder detonation nanodiamonds (DNDs) by means of treatment at high pressures (P ~ 7 GPa) and temperatures (T > 1300°C) have been studied by electron paramagnetic resonance (EPR). A key feature of treatment (high-pressure high–temperature (HPHT) sintering) is the use of low molecular weight alcohols in the process. The appearance of a hyperfine EPR signal structure due to “paramagnetic nitrogen” (P1 centers) is explained by the growth of submicron and micron diamond single crystals from DND nanocrystals by the oriented attachment and coalescence mechanism. Such growth and coarsening of crystals appreciably decreases the concentration of paramagnetic centers, the presence of which hinders the detection of a hyperfine structure in the EPR signal from P1 centers, in the near-surface areas of coalesced and grown together DND particles. It has been shown that the concentration of paramagnetic defects of all types decreases to ~3.1 × 1018 g–1 (~60 ppm) during HPHT treatment at T = 1650°C. This causes the successful identification of P1 centers, whose fraction is no less than ~40% of the total amount of paramagnetic centers in microcrystals synthesized by HPHT sintering.  相似文献   

10.
Paramagnetic centers of three types are found in SrF2: Fe(0.2 at. %) crystals. Two types are observed in the untreated crystals, and the third type appears only in the crystals irradiated by x-rays. The EPR spectra of one type of centers in a nonirradiated crystal and of the centers that appear after irradiation are described by the orthorhombic Hamiltonians with an effective spin S eff = 5/2. In both cases, the centers are observed at 4.2 and 77 K. The principal axes of the spin Hamiltonians for them are along the 〈001〉, 〈1 \(\overline 1 \) 0〉, and 〈110〉 axes. However, the fine-structure parameters of their EPR spectra differ significantly. An analysis of the superhyperfine structure (SHFS) of the EPR spectra shows that the radiation center forms through substitution of a Fe2+ ion for a Sr2+ cation. Under x-ray irradiation, the Fe2+ ion transforms into the Fe3+(6 A 1g ) state and is displaced to an off-center position along the C 2 axis of its coordination cube. The absence of a SHFS in the EPR spectra of the orthorhombic centers in a nonirradiated crystal makes it impossible to determine their molecular structure unambiguously. The most probable model is proposed for this structure. The EPR spectra of centers of the third type were observed only at 4.2 K, and the structure of these centers was not studied.  相似文献   

11.
Microdiamonds grown under high-pressure and high-temperature conditions from a P–C medium at different temperatures have been studied by electron paramagnetic resonance (EPR). Two paramagnetic centers P1 and MA1 were observed in microdiamonds grown at 1,873 K. Analysis of weak lines around these centers suggests that they may be due to 13C hyperfine structure (HFS) of the MA1 center. The calculated s/p hybridization parameter for this carbon atom (C1) was similar to that for the undistorted lattice. At a growth temperature of 1,973 K, in addition to MA1 and P1, a new center, labeled NP1, with HFS from nitrogen and phosphorus atoms and with EPR parameters similar to NIRIM 8 was identified. The NP1 (NIRIM8) centers have an electron spin S = 1/2. We propose that nitrogen–phosphorus defects are created through subsequent migration of nitrogen atoms towards phosphorus atoms upon increasing of the growth.  相似文献   

12.
Electron paramagnetic resonance (EPR) was used to investigate the transformation of as grown nickel and nitrogen defects at the annealing of synthetic diamonds, obtained by the temperature gradient method. Structural models and formation mechanisms of the seven nickel containing paramagnetic centres (NE1-NE7) in synthetic diamonds are discussed. A common structural fragment of NE1-NE4 centres is a double semivacancy, in centre of which Ni+ ion is located. The NE6, NE7 centres are proved to operate as shallow electronic traps. The effects observable for NE5 centres are supposed due to an internal electronic transformation in them. The problem of charge compensators for nickel ions is also discussed. The features observable in the charge transfer processes under X-ray irradiation for nickel and nitrogen containing centres suggest that donor nitrogen serves as a bulk charge compensator for substitutional nickel and NE1 centres.  相似文献   

13.
In this letter we report the first observation by EPR of helium-associated defects in solid. Two new (S = 1) EPR spectra, labeled Si-AA5 and Si-AA6, arise from the association of helium and intrinsic defects in crystalline silicon. Both are produced by helium ion implantation at room temperature and are stable to 180°C. By implanting 3He isotope, the Si-AA6 3He hyperfine spectrum has been observed. Both centers are tentatively identified as vacancy-helium centers in neutral charge states.  相似文献   

14.
It is discovered that the electron paramagnetic resonance (EPR) spectrum of the doubly charged copper centers occurs in single crystals of Pb5Ge3O11 doped with gadolinium or iron after annealing in an atmosphere containing chlorine and bromine. Similar annealing of the crystals doped with copper in a chlorine and fluorine atmosphere leads to redistribution of the intensities of the EPR spectra of two types of Cu2+ centers. The influence of annealing on the ongoing intensity of spectra of the dimeric triclinic centers Fe3+–A, Gd3+–A (where A represent Cl?, Br?, O2?, F?) was the subject of this research. Consideration is given to the mechanisms for changing the charge state and association of copper center with defects.  相似文献   

15.
The local structure of titanium pair centers in SrF2: Ti crystals is investigated using electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy. It is found that titanium pair centers with spin moment S=2 and tetragonal symmetry of the magnetic properties are formed in SrF2: Ti cubic crystals under certain growth conditions and during annealing. The tensor components of the fine and ligand hyperfine structures in the EPR and ENDOR spectra are determined. A model of the Ti+-Ti3+ paramagnetic dimer is proposed. This model provides an adequate interpretation of both the ferromagnetic nature of the exchange interaction and the observed displacements of four ligands in the first coordination sphere of titanium impurity ions in directions perpendicular to the impurity ion-ligand bonds.  相似文献   

16.
A new iron center in stoichiometric lithium niobate crystals has been studied by the EPR method. The angular dependences of the EPR spectrum of the center have been used to derive the parameters of its spin Hamiltonian. The data amassed on the variation in the concentrations of two iron centers in lithium niobate crystals annealed in a Li2CO3 powder have provided an insight into the mechanism of formation of the new center, as well as corroborated its model proposed by us earlier. According to this model, the center represents a complex of two defects aligned with the polar axis in the crystal: the iron ion at the niobium site and an interstitial lithium ion filling the nearest structural vacancy (Fe3+[Nb]-Li+[V]). The structure of other Fe3+ centers revealed earlier in LiNbO3 crystals, in which the iron ion occupies the niobium site, has been discussed.  相似文献   

17.
The EPR powder spectra of spinel solid solutions CoxZn1-xRh2O4 (x ? 0.10) have been studied in the temperature range 6–77 K. The spectra show that Co2+ ions occupy distorted tetrahedral sites. As the cobalt concentration increases, the spectrum of the isolated ions is gradually replaced by a strong absorption produced by antiferromagnetic exchange coupled clusters of Co2+ ions.  相似文献   

18.
The mechanisms of the inhomogeneous broadening of the EPR spectra of exchange-coupled copper dimers, high-spin iron centers in lithium germanate, and off-center Tl2+ ions in potassium sulfate are analyzed. It is shown that the additional EPR signals observed for these materials when two EPR lines are nearly coincident can be due to averaging of a portion of the spin packets associated with these lines.  相似文献   

19.
The analysis of the electron paramagnetic resonance (EPR) line shape of ultra-dispersed diamond (UDD) obtained by conversion of trotyl and hexogen mixture and purified from other phases and metal compounds is carried out. The observed wide line with g = 2.0028 and a line width of 8.7 G is shown to be formed by superposition of three lines with line widths of 15.3, 8.5 and 3 G and with a ratio of integral intensities of 70:30:1. The procedure of decomposition and subtraction of wide lines has revealed the resolved hyperfine structure (HFS) from donor nitrogen with parameters A = 40.8 G and B = 29.2 G. Experimentally obtained dependence of the line width of the exchange line on the concentration of donor nitrogen in synthetic diamonds assumed that variations in line widths of the EPR spectrum components are caused by different local concentration of donor nitrogen due to distribution of nitrogen impurity during crystallization of diamond nanoparticles. EPR spectra of UDD after annealing in vacuum and at high pressures in the range of diamond phase stability are also discussed. At high-pressure annealing above 973 K, the areas with high concentration of defects are graphitized and a narrow Dyson-shape line from conductivity electrons and a resolved HFS from donor nitrogen can be observed without additional treatment of the EPR spectrum.  相似文献   

20.
The electron paramagnetic resonance (EPR) spectra observed in laser materials based on zinc selenide (ZnSe) crystals doped with transition elements have been analyzed and identified. It has been shown that, in addition to working impurities (Cr2+, Co2+, or Fe2+), the diffusion layer exhibits EPR spectra of accompanying impurities due to the diffusion of transition elements (chromium, cobalt, or iron) used in the preparation of active materials for quantum electronics (lasers, switches) operating in the mid-infrared range. EPR diagnostics of these impurities can be used in the development of appropriate regimes for minimizing concentrations of accompanying impurities that adversely affect the performance characteristics of laser materials. It has been found that, during the diffusion of transition metals, ions of the accompanying impurity Mn2+, which is characterized by extremely informative EPR spectra, are embedded in the crystal lattice. It has been proposed to use these ions as ideal markers to control, on the electronic level, the crystal structure of the active diffusion layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号