首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The influence of the sintering conditions on the microstructure and critical current density Jc has been studied on screen-printed Ag-(Bi, Pb)2Sr2Ca2Cu3Ox tapes with a ceramics mono-layer core. Three kinds of fabrication processes, which consist of a combination of cold working (rolling and/or pressing) and sintering, are applied. Four times repetition of pressing and sintering after the pre-sintering produces the highest c-axis alignment and achieves Jc= 1.5 × 104 A/cm2 (77 K, 0 T). The Jc versus θ data with an angle θ between B and the c-axis elucidate the relation between the anisotropy ratio γ=Jc(Bc)/Jc(B|c and the half-height angular width Δθ of a peak for Bc. This is related to both grain alignment and the Jc value. An increase in Jc, which comes from an improvement for grain alignment, enhances γ and narrows Δθ. The Jc versus θ data are fitted to the expression Jc(B, θ)=J c(B, 90°)/[(γ−1)|cos θ|n+1] by regarding both γ and n as adjustable parameters. Fabrication of screen-printed tapes with multilayers (1≤N≤5) is presented, where the critical current increases from 8.0 A to 30.2 A at 77 K and 0 T as N increases.  相似文献   

2.
A systematic study of the magnetic hysteresis in transport properties of polycrystalline YBa2Cu3O7−δ–Ag compounds has been made based on two kinds of measurements at 77 K and under applied magnetic fields up to 30 mT: critical current density Jc(Ba) and magnetoresistance R(Ba). The R(Ba) curves show a minimum in their decreasing branch occurring at B=Bmin which was found to be both the excitation current Iex and the maximum applied magnetic field Bam dependent. In addition, for a certain value of Bam>5 mT, we have observed that Bmin increases with increasing Iex and reaches a saturation value. The Jc(Ba) curves show a maximum in decreasing applied magnetic fields occurring at B=Bmax. We have also found that Bmax increases with increasing Bam and reaches a saturation value. The minimum in the R(Ba) and the maximum in Jc(Ba) curves were found to be related to the trapped flux within the grains. All the experimental results are discussed within the context of the flux dynamics and transport mechanisms in these high-Tc materials.  相似文献   

3.
We measured the AC transport current loss of Bi 2223 multifilament Ag-sheathed tape under DC external magnetic field of 0–0.2 T. There were discrepancies between the measured data and Norris' formula for elliptical model in the range of low value of Ip/Ic (Ip and Ic are peak of the AC transport current and critical current of the tape respectively), while without DC background field, the loss of the tape was close to Norris' formula. Theoretically speaking, even with the DC background field and decreased critical current the AC transport current loss of the tape follows Norris' formula which is derived from the Bean model. When DC background field is applied to the HTS tape, n value of the power law EJ characteristics decreases together with the decrease of Jc. Dependence of the AC transport current loss on the n value was analyzed by numerical calculation. The results show that the loss depends on the n value and that decrease of the n value is one of the causes of the discrepancies between the measured data and Norris' formula.  相似文献   

4.
A double step characteristic is observed at 76 K in the transport critical current as a function of magnetic field (10-4 T to 10 T) in bulk sintered Y-, Bi- and Tl-based high-Tc superconducting materials. The low-field, step-like drop in the critical current density Jc commences at magnetic fields B between about 0.3 and 2 mT. This is followed by a plateau region of relatively constant critical current extending from about 30 to 300 mT, and then a second drop at fields between about 0.3 and 10 T. These features occur for all three superconductor materials and are interpreted respectively as a self-field/weak-link regime, a remnant percolation path regime and a flux-flow/upper-critical-field regime. The sharpness of the transition of the voltage-current (V-I characteristic, represented by the transition parameter n (i.e., VIn), has a similar double-step shape as a function of magnetic field directly corresponding to the features of the Jc(B) characteristic.  相似文献   

5.
The effects of the thallium and mercury content x on the as-sintered and post annealed samples of MxPb0.4Sr1.6Ba0.4Ca2Cu3O8+δ {M: Tl (0.32≤x≤0.74) or Hg (0.18≤x≤0.68)} have been studied by magnetization and transport measurements. For Tl-1223 we have found the optimum Tl doping level to be x=0.53 regarding the grain properties, the content of superconducting phase, the first penetration field Hplwl, the transport (Jctr), magnetic intergrain (JcM) and intragrain (Jcg) critical current densities. The critical temperature Tc of the as-sintered Tl-1223 sample decreased with increasing Tl content. Post-annealing in oxygen improved the Tc for Tl contents of x≥0.53 and had generally positive effects on the critical current densities. The intergrain properties of the Hg-1223 samples were much worse than those of the Tl-based superconductors.  相似文献   

6.
Isothermal low-field AC susceptibility measurements have been used to analyze the intergranular critical current density Jc(T) on sintered, non-oriented YBa2Cu3O7−δ and Bi2Sr2CaCu2O8+δ ceramic samples at zero field. Below the critical temperature, potential variations, Jc(T) ≈ (1−tj)m with tj = T/Tj, have been found, Tj being the onset of grain's coherence, but with different exponents, supporting that different mechanisms limit the intergranular Jc values. Moreover, the effect of texture has been also considered on Bi2Sr2CaCu2O8+δ ceramics grown by the laser floating zone method, which have stronger intergranular junctions. Their high-temperature behaviour is limited by intrinsic effects, while at low temperatures the quality of the junctions is the limiting factor. The temperature dependence of the χ′(h0) extrapolation at zero filed has also been correlated with the evolution of the intergranular penetration depth, λJ(T).  相似文献   

7.
Transport AC losses measured in self-field conditions on multifilamentary Bi-2223 tapes are often found to be lower than those calculated within the framework of the critical state model for a bulk wire with elliptical cross section, though generally higher than predicted for a strip. This effect is sometimes ascribed to the non-ideal geometry of the tapes, which does not exactly reproduce either shape. Here we propose an alternative explanation assuming that the critical current density of superconducting material depends on magnetic field. In practice, we analyzed the AC loss curve and deduced different Ic values for the individual data points, using the standard Norris equation for elliptical conductor. This gives the relation between ‘calculated' Ic and the self-field associated to AC transport current, which can be regarded as an alternative way to qualify the dependence of Jc on magnetic field. Important is that this procedure covers the range of fields below the self-field at Ic where the measurement in background DC field can not be used to determine Jc(B).  相似文献   

8.
The dependence of transport Jc value on the traveling rate and the nominal composition was investigated by taking different nominal compositions of YBa2Cu3O6+x (Y123) + n mol% Y2BaCuO5 (Y211) (n = 10, 20, 30, 40 and 50) with addition of 0.5 wt% of Pt on samples processed by different unidirectional solidification rates, namely 1, 3 and 5 mm/h. The highest Jc was found in the sample with 30% Y211 addition by the higher traveling rate adjusted to prevent the formation of polycrystals. In this φ 1.56 × 60 mm sample the values of transport Ic and Jc were 1370 A and 71 700 A/cm2, respectively, which were obtained by the conventional DC four-probe method with criterion of 1 μV/cm at 77 K and self-field.  相似文献   

9.
The superconductivity of ZnO-doped (Bi, Pb)-2223 thick film on the Ni and NiO substrates, which was prepared by the spray deposition technique with cold forging, was investigated by characterizing the critical current density (Jc), the critical temperature (Tc), the orientation factor (f), and the microstructure of the film. The thickness of the thick film prepared by the spray deposition method was approximately 10 μm. The maximum Jc value of (Bi, Pb)-2223 film on NiO substrate was approximately 2200 A/cm2 (Ic = 110 mA) when the film was sintered at 865 °C for 1 h with a cooling rate of 0.5 °C/min from 865 °C to 650 °C; in the case of Ni substrate, a maximum Jc value of approximately 2000 A/cm2 (Ic = 100 mA) was obtained for the (Bi, Pb)-2223 thick film when a cooling rate was 3 °C/min. Such a difference in the Jc values of (Bi, Pb)-2223 thick film on Ni and NiO substrates is attributed to the presence of reaction layer at the (Bi, Pb)-2223 and substrate interface. In addition, the variations in the orientation factor of (Bi, Pb)-2223 thick film on NiO substrate related to those of Jc values. The Jc values of (Bi, Pb)-2223 film on NiO substrate with ZnO doping extremely depended on the amount of ZnO doping and the 0.5 wt% ZnO-doped (Bi, Pb)-2223 thick film deposited on NiO substrate, which was sintered at 835 °C for 1 h in air with a cooling rate of 1 °C/min, showed a Jc value of approximately 1200 A/cm2 (Ic = 60 mA). Thus, it is considered that a small amount of ZnO doping was effective in lowering the sintering temperature of (Bi, Pb)-2223 thick film, resulting the improvement in the intragranular weak bonding or Josephson junction.  相似文献   

10.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

11.
The critical state model is used to derive equations that relate the additional magnetic moment (ΔM) produced by the flux pinning to the critical current density (Jc) measured in transport measurements. The equations derived for conventional superconductors can be used for superconductors that contain magnetic ions, if ΔM is replaced by ΔM/(1 + χ′(H)) where χ′(H) is the differential susceptibility. In the critical state, the field gradient has contributions from both the macroscopic supercurrents and the Amperian currents from the magnetic ions. Magnetic measurements are sensitive to both contributions. Transport measurements only characterise the macroscopic supercurrents. For superconductors which contain rare-earth elements, the Jc values calculated using hysteretic magnetisation measurements without including the term χ′(H), can be in error by factors of 7.  相似文献   

12.
陈艺灵  张辰  何法  王达  王越  冯庆荣 《物理学报》2013,62(19):197401-197401
通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此TcJc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义. 关键词: 2超导膜')" href="#">MgB2超导膜 混合物理化学气相沉积法 厚度 临界电流密度  相似文献   

13.
We report on the fabrication and characteristics of sandwich-type tunnel junctions with highly crystalline sputtered a-axis oriented thin film of Y1Ba2Cu3O7-x (YBC) as the base and the counter electrode. The junctions have been fabricated on SrTiO3 (100) and MgO (100) substrates. A non-superconducting phase of YBC corresponding to a lattice constant of 4.08 Å is used as the barrier layer making this an all YBC sandwich junction. For all temperatures below Tce (R=0) of the device, a zero voltage current was observed. The critical current density (Jc) of the device was found to be dependent on the thickness of the barrier layer and the crystallinity of the a-axis oriented YBC electrodes. At 40 K, such a junction fabricated on a SrTiO3 (100) substrate was found to have a Jc of 1.8 X 104 A/cm2 and an IcRn product of 0.2 mV.  相似文献   

14.
The recently reported superconducting YBa2Cu3Oy (Y123) foams are highly interesting and promising for variety of applications. In this report we present first magneto-transport measurements of the superconducting properties of these foams. The investigations reveal the superconducting properties being similar to those of bulk melt processed materials. The 123 foams reveal a Tc of 92 K and have a magnetization Jc of 40,000 A/cm2 at 77 K and 0 T. The measurements of magnetic hysteresis versus field show a high anisotropy of the critical current density up to Jcab/Jcc7.  相似文献   

15.
High-Tc superconducting thin films have been deposited in situ by means of a plasma assisted metal-organic chemical vapour deposition (PAMOCVD) process on LaAlO3. An EMCORE high-speed rotating disc reactor was used to deposit the films at a substrate temperature of 600°C to 800°C. The system is equipped with a (remote) 120 W microwave plasma generator. The oxidising plasma gas is N2O and/or O2 while Ar was used as the inert carrier gas for the different metal-organics. The influence of different process parameters (such as the temperatures of the metal-organics, substrate temperature, and plasma gas composition) on the superconductive properties and on the morphology of the films was investigated. Surface morphology and composition were studied by SEM/EDX or EPMA, and AC susceptibility measurements were used to investigate the superconductive properties (Tc and Jc). X-ray diffraction measurements indicated that single-phase YBa2Cu3O7−x films were epitaxially grown with the 00l orientation perpendicular to the substrate surface. The critical temperature (Tc) of the films is about 90 K and the critical current density (Jc) is higher than 106 A/cm2 at 77 K and zero field.  相似文献   

16.
17.
Silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox (Bi(2223)) tapes were fabricated by the “oxide-powder-in-tube” technique. After the tapes were shaped and sintered, an additional cold rolling and a re-sintering were applied in order to enhance the critical current density Jc. The influence of the additional rolling conditions (roll diameter, number of passes, lubrication) on the Jc (77 K, 0 T) was made clear. The influence of the sintering conditions (temperature, heating rate) on Jc was also investigated. As for the rolling conditions, a small redundant shear deformation or a small contact angle leads to a good grain alignment, texturing, and a higher Jc value. As for the temperature of the first sintering, 1113 K is superior to 1118 K because of the volume fraction of the Bi(2223) phase.  相似文献   

18.
The current density distribution of high temperature superconducting (HTS) tapes is modeled for the combined case of an alternating self and applied magnetic field. This numerical analysis is based on the two-dimensional Poisson equation for the vector potential. A one-dimensional current (z-direction) and a one-dimensional applied field (y-direction) are assumed. The vector potential is rewritten into an equation of motion for the current density J(x,y,t). The model covers the finite thickness of the conductor and an n-power E–J relation. The magnetic field dependence of Jc is also included in this E–J relation. A time-dependent two-dimensional current distribution that is influenced by the aspect ratio of the conductor and the material properties in E=f(J,B) is calculated numerically. The numerical results are compared with the experimental results for the AC loss of a tape driven by a transport current. Finally, a total AC loss factor is given for two cases in magnetic field direction, perpendicular and parallel to the conductor broad side.  相似文献   

19.
《中国物理 B》2021,30(7):77404-077404
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS) magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods. The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement, which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper, we study the influences of some physical and geometrical parameters, including the strength of the external magnetic field(B0) produced by a rectangular permanent magnet(PM), critical current density(Jc), the PM-to-HTS area ratio(α), and thickness ratio(β), on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC) conditions. In the first and second passes of the PM, the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases with β increasing in ZFC and FC. The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc, which is obviously different from the lateral force–Jc relation. The α-dependent lateral stiffness changes with some parameters, which include the cooling conditions of the bulk HTS, lateral displacement, and movement history of the PM. These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.  相似文献   

20.
A new method using a combination of cold isostatic pressing (CIP) and hot-pressing (HP) was applied to fabricate Bi-2223 bar current leads. The critical current density (Jc) achieved by this method reached as high as 1000 A/cm2 at 77 K and self-generated magnetic field. This value of Jc presented here is much higher than the best Jc reported for rod current leads which is 570 A/cm2 achieved by CIP technique [Y. Yamada, Bi-based bulk current leads and their applications, in: H. Meada, K. Togano (Eds.), Bismuth-based High-temperature Superconductors, 1996, p. 277.]. The phases and microstructures were analysed by XRD and SEM. The texture and weak link were studied by pole figures and AC susceptibility, respectively. The results show that the grain connectivity, matrix density and texture of the samples were improved significantly by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号