首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a series of molecular dynamics simulations to study the porosity on different matrix configurations. The matrices were prepared using two different processes. In the fist method we used direct simulations of a fluid at a fixed density and the matrix was taken from the last configuration of its particles. In the second method we simulated a binary mixture where one of the components served as a template material and the final porous matrix configuration was obtained by removing template particles from the mixture. Matrices were prepared at different densities and at different matrix particle interactions. The results showed that the matrix structure and the matrix porosity were affected by the way the porous matrices were prepared. Finally, we also investigated the diffusion of a fluid inside the matrices. The diffusion coefficient was measured by mean square displacements of the particles in the fluid. It was observed that this quantity was also affected by the kind of porous matrix employed. The calculations were performed for several fluids at different densities in the different porous matrices. From these studies we observed that the highest porosity and diffusion coefficient were found in matrices prepared with attractive particle interactions and without any template.  相似文献   

2.
We present a series of molecular dynamics simulations to study the structure of porous matrices confined in a slit-pore. The matrices were prepared by two different methods. In the first method we used direct simulations of a fluid at a fixed density and the matrix was taken from the last configuration of its particles. In the second method we simulated a binary mixture where one of the components served as a template material and the final porous matrix configuration was obtained by removing template particles from the mixture. In both methods the matrices were confined by two parallel walls (slit-pore) modeled by continuous solid surfaces. The results show that the matrix structure and porosity were affected by the method of preparation of the porous matrices. Moreover, we found smaller void cavities in these matrices than in matrices prepared without walls. Finally, diffusion of a fluid inside the matrices was investigated and it was found that the diffusion coefficient did not decrease with the fluid density, and presented a maximum at certain values of the fluid density.  相似文献   

3.
王子玉  尚吉花  杨新宇  张久兴 《强激光与粒子束》2021,33(5):053001-1-053001-8
利用正交试验探讨了放电等离子技术工艺参数(温度、压力、保温时间)对钡-钨(Ba-W)阴极中的W的孔隙度的影响规律,获得了孔隙率在23%~30%内变化时所需要的最佳工艺参数。在此基础上,制备出了具有不同孔隙度的球形W基体和普通不规则的W基体。研究表明:球形多孔W颗粒间堆积、排列有序,无闭孔,孔径分布集中而均匀,在26.3%的孔隙度下中值孔径为1.41 μm;机械性能方面,球形钨粉基体维氏硬度低于传统普通不规则钨多孔体。在脉宽10 μs、频率1000 Hz的条件下,阴极脉冲发射电流密度随着孔隙度的增大,先增大后减小。当基体孔隙度为26.3%时,阴极电流发射密度最大,在1050 ℃,偏离点发射电流密度可达24.62 A/cm2,零场发射电流密度为7.62 A/cm2,功函数为1.95 eV。  相似文献   

4.
《Physics letters. A》1998,237(3):183-188
Two-dimensional angular correlation of positron-electron annihilation radiation and positron-lifetime experiments have been performed on lightly doped porous silicons prepared under different HF concentrations. Positronium formation in the etched pores and positron trapped in voids are observed in both experiments. A surprising result is found that both positron lifetime and momentum spectra show a reduction in the size of the etched pores with decreasing HF concentration in the etching solution. This trend is different from the intuitive expectation that the pore size increases with increasing porosity. Our result can be explained in terms of the formation mechanism of porous film in lightly doped silicon.  相似文献   

5.
We investigated optical transparency in ceramics assisted by disordered porous clusters. The structure and statistical properties of three-dimensional (3D) well porous ceramics is studied. Theoretical model based on the percolation theory and numerical simulations are applied to interpret the observed phase transition from an optically opaque state to a transparent state. The porous ceramic samples were fabricated by the technique of slurry casting. The transmission of optical radiation (optical percolation) over the entire porous samples is observed since the critical concentration of porosity was exceeded. We explain this effect by the rising of the spanning cluster inside of the porous structure that produces a network of porous voids. Our experimental results are in good agreement with the numerical simulations.  相似文献   

6.
A porous mullite-matrix composite with a bimodal pore structure has been prepared by a freeze casting route using water/coal fly slurry system. The top and bottom parts of the sintered freeze cast body consisted of solid particles and micropores, which were irregularly distributed. However, the middle section was made up of small lamellar pores and porous ceramic walls, aligned along the solidification direction. The porosity of mullite composites was in the range 67-55% after sintering at 1300-1500 °C. The addition of 3Y-ZrO2 reduced the porosity, especially material in sintered at 1500 °C due to relatively high densification. The compressive strength of the porous composite with 10 wt% 3Y-ZrO2 addition, sintered at 1500 °C exhibited a maximum value of ∼41 MPa.  相似文献   

7.
We propose constitutive models for polycrystalline aggregates with intergranular cavities and test them against full-field numerical simulations. Such conditions are prevalent in many engineering applications and failure of metallic components (e.g. HIPing and other forming processes, spallation under dynamic loading conditions, etc.), where the dilatational effects associated with the presence of cavities must be accounted for, and standard polycrystalline models for incompressible plasticity are not appropriate. On the other hand, it is not clear that the use of porous plasticity models with isotropic matrix behavior is relevant, particularly, when large deformations can lead to significant texture evolution and therefore to strong matrix anisotropy. Of course, finite strains can also lead to significant changes in the porosity and pore shape, resulting in additional anisotropy development. In this work, we make use of ‘variational linear-comparison’ homogenization methods to develop constitutive models simultaneously accounting for texture of the matrix, porosity and average pore shape and orientation. The predictions of the models are compared with full-field numerical simulations based on fast Fourier transforms to study the influence of different microstructural features (e.g. overall porosity, texture of the matrix phase, single-crystal anisotropy, etc.) and type of loading (triaxiality) on the dilatational viscoplastic behavior of voided polycrystals. The results are also compared with the predictions of isotropic-matrix porous plasticity models to assess the effect of the possible matrix anisotropy in textured samples.  相似文献   

8.
Studies of the physical parameters that influence the single scattering properties of a size distribution of small particles in random orientation are fundamental in understanding the origin of the observed dependence of the scattering matrix elements on the scattering angle. We present results of extensive calculations of the single scattering matrices of small nonspherical particles performed by a computational model based on the Discrete-Dipole Approximation. We have particularly studied the sensitivity of the size-averaged scattering properties at visible wavelengths of nonspherical, randomly oriented absorbing particles considering changes in shape, porosity and refractive index. These studies have importance regarding the inversion of physical properties of small particles as measured in the laboratory and the dust properties in various astrophysical and atmospherical environments. We have found that size distributions of randomly oriented irregular particles of different shape, including large aspect ratio particles, show similar scattering matrix elements as a function of the scattering angle, in contrast with the pattern found for regularly shaped particles of varying axis ratios, for which the scattering matrix elements as a function of the scattering angle show much larger differences among them. Regarding porosity, we have found a very different pattern in the scattering matrix elements for an ensemble of compact and porous particles. In particular, the linear polarization for incident unpolarized light produced by compact and absorbing particles of large size parameter tend to mimic the pattern found for large absorbing spheres. For porous particles, however, the linear polarization for incident unpolarized light tends to decrease as the size of the particle grows, with the maximum being displaced towards smaller and smaller scattering angles.  相似文献   

9.
The classic solvent casting/particulate leaching method to fabricate PCL scaffolds was improved by using a centrifugal technology, a direct bonding process in preparing salt matrices and a technology of vacuum treatment under heating in the desolvation process. Series operations of preshaping, centrifuging, casting and desolvating were employed during the scaffold's manufacture. The scaffold's properties were characterized including micro‐structures, pore dimensions, porosity and hydrophilicity. The results show that centrifugal technology can improve the pore uniformity of scaffolds. In the bonding process, well‐interconnected porous structures were formed if water content was between 2~7%. The distribution of pore dimensions was from 10 to 80 μm, and the porosities were about 89%. Generally, the porosities formed by vacuum treatment at high temperature are greater than those formed by vacuum treatment at ambient temperature in the desolvation process. The fabricated porous PCL scaffolds with good elasticity and desired thickness could be a good choice for application in soft tissue engineering.  相似文献   

10.
The unique structure of a set of self-assembled porous silica materials was characterized through a combined small-angle scattering (CSAS) method using small- and ultra-small angle neutron scattering as well as small-angle X-ray scattering. The porous silica specimens investigated were prepared by a sol-gel method under the presence of alkylketene dimer (AKD) template particles and through calcination, which leads to the development of porous silica having a mass-fractal structure over length scales from ~ 100 nm to ~ 10 μm. Furthermore, the specimens posses a hierarchical structure, which consist of a fractal porous structure, and also contain primary silica particles less than 10 nm in size, which form a continuous silica matrix. To characterize these complex structures, observation over a broad range of length scales is indispensable. We propose a CSAS technique that serves this purpose well.  相似文献   

11.
Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.  相似文献   

12.
The structure of high-silica glassy nanoporous matrices prepared from two-phase glasses has been investigated using the small-angle X-ray scattering technique. Parameters of materials, such as the density, porosity, specific surface area, average nanopore radius, average radius of scattering particles filling the pore space, and their fractal dimensions, have been determined. The dependence of the obtained structural parameters on the conditions of chemical treatment of glasses has been established. It has been demonstrated that the results obtained are in good agreement with porosimetry and electron microscopy data.  相似文献   

13.
We have studied a model of a hard sphere fluid adsorbed in a cylindrical pore filled with quenched disordered matrix of hard sphere particles using Grand canonical Monte Carlo simulations. The interactions between matrix species and pore walls are assumed of a hard sphere type. However, the pore walls exert a short-range attraction upon adsorbed fluid particles. We discuss the adsorption isotherms and the density profiles of fluid particles in pores with different microporosity for several values of the pore radius. We have observed that like in homogeneous microporous media the adsorption increases with increasing porosity. However, trends of behavior of the isotherms also reflect layering of adsorbed fluid. The data obtained in this study may serve as a benchmark for the development of the theory of confined quenched-annealed systems and for computer simulation investigation of models permitting phase transitions in pores. This project has been supported in parts by DGAPA of the UNAM under research grant IN111597, by the National Council for Science and Technology (CONACyT), grant No. 25301-E.  相似文献   

14.
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modification process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed.  相似文献   

15.
Gold nanoparticles (AuNPs) having variety of sizes and shape were prepared using the template synthesis approach. Porous silicon (PSi) was fabricated using the pulsed electrochemical anodization method at different pause times, Toff as template for gold deposition. Choosing suitable pulse parameter produces PSi with higher porosity and smaller crystallite size. SEM showed that the variation of Toff affects the pores formation and the growth of gold nanoparticles while EDX suggested the presence of Au inside the pores structure. Photoluminescence spectra showed emission enhancement and a blue shifted relative to porous silicon before deposited with AuNPs. XRD shows a high degree crystallinity of the samples and the presence of cubic gold with crystalline sizes was around 42 nm.  相似文献   

16.
The porosity and pore geometry of disordered materials can be influenced by employing a removable template during synthesis. A theoretical and simulation study is reported of the configurational effects of template size and density on the adsorption isotherms of templated porous materials. To isolate the configurational (entropic) contributions, the adsorbate, matrix and template components are modelled as hard spheres. The replica Ornstein-Zernike equations proposed by Zhang, L. and Van Tassel, P. R. (2000) J. chem Phys., 112, 3006 are used within the Percus-Yevick approximation to calculate adsorption isotherms for differently sized adsorbate and template components. These theoretical results are compared with results from Monte Carlo simulation. It is found that adsorption is most enhanced whenever the size of the template is equal to or slightly larger than that of the adsorbate. Also, for systems of constant matrix density or constant matrix plus template density, increasing the density of template enhances the adsorption.  相似文献   

17.
The influence of experimental parameters on the morphology of the porous structure and on the formation kinetics has been investigated for anodic alumina membranes (AAM) grown in aqueous H3PO4 at 160 V. It was found that pore aspect ratio and membrane porosity on the solution-side surface are influenced by tensiostatic charge, bath temperature and the presence of Al3+ ions in solution. Morphological and kinetic data, recorded in different conditions, give useful information on the growth mechanism of pore channels in phosphoric acid solution.Nickel nano-structures have been fabricated using AAM as template. Electroless deposition, performed by adding the reducing agent to a suitable bath in several steps, resulted in the formation of short metal nanotubes (about 5 μm long) in the upper part of the channels. Long Ni nanowires (up to 25 μm) with aspect ratio higher than 100 were obtained by pulsed unipolar electrodeposition from a Watt bath. In this case, both the influence of some experimental parameters on the nanowires growth and the fast current transients during the electrodeposition steps were analyzed.  相似文献   

18.
Grain structure of porous sodium niobate ceramics (with 3-0 connection and variable porosity changing from 1.0 to 13.6%) fabricated under different conditions is investigated and the microstructure parameters are calculated for different degrees of porosity. It is demonstrated that with increasing degree of porosity, the character of the sodium niobate grain structure changes due to the formation and ordering of the pore -multilayered grain coating clusters, sharp increase in the total pore surface area, and its significant excess over the external sample surface area. These structural changes can influence significantly the integral electrophysical characteristics of the porous sodium niobate ceramics and determine a high degree of its piezoanisotropy.  相似文献   

19.
《Solid State Ionics》2006,177(7-8):709-713
A novel composite microporous polymer electrolyte based on poly(vinylidene fluoride), poly(ethylene oxide), and microporous molecular sieves ZSM-5 (denoted as PVDF–PEO/ZSM-5) was prepared by a simple phase inversion technique. PEO can obviously improve the pore configuration, such as pore size, porosity, and pore connectivity of PVDF-based microporous membranes, results in a high room temperature ionic conductivity. Microporous molecular sieves ZSM-5 can further improve the mechanical strength of PVDF–PEO blends and form special conducting pathway in PVDF–PEO matrix by absorb liquid electrolyte in its two-dimensional interconnect channels. The high room temperature ionic conductivity combined with good mechanical strength implies that PVDF–PEO/ZSM-5 based composite microporous polymer electrolyte can be used as candidate electrolyte and/or separator material for high-performance rechargeable lithium batteries.  相似文献   

20.
J. Zhao 《Applied Surface Science》2010,256(14):4586-4590
Polycaprolactone (PCL)-coated porous hydroxyapatite (HA) composite scaffolds were prepared by combining polymer impregnating method with dip-coating method. Three different PCL solution concentrations were used in dip-coating process to improve the mechanical properties of porous HA scaffolds. The results indicated that as the concentration of PCL solution increases the compressive strength significantly increased from 0.09 MPa to 0.51 MPa while the porosity decreased from 90% to 75% for the composite scaffolds. An interlaced structure was found inside the pore wall for all composite scaffolds due to the penetration of PCL. The porous HA/PCL composite scaffolds dip-coated with 10% PCL exhibited optimal combination of mechanical properties and pore interconnectivity, and may be a potential bone candidate for the tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号