首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectra of the uranyl titanate mineral holfertite Ca x U2?x Ti(O8?x OH4x )·3H2O were analyzed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U–OH bending vibrations, and H2O stretching and bending. The mineral holfertite is metamict, as is evidenced by the order/disorder of the mineral. Unexpectedly, the Raman spectrum of holfertite does not show any metamictization. The intensities of the UO stretching and bending modes show normal intensity and the bands are sharp.  相似文献   

4.
The IR and Raman spectra are measured and analysed for sodium pyrophosphate decahydrate. The spectra are interpreted on the basis of P2O 7 4− ion and water vibrations. The observed results fit with the features predicted for the factor goup model. The appearance of two sets of frequencies in the stretching and bending regions of water suggests the existence of two kinds of water molecules in the crystal. This is confirmed by deuterium substitution.  相似文献   

5.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectra of two well‐defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. The observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations as well as stretching and bending vibrations of water molecules and hydroxyl ions. The non‐interpreted Raman spectra of koritnigite from the RRUFF database and the published infrared spectra of cobaltkoritnigite were used for comparison. The O H···O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X‐ray single‐crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of koritnigite was proved from the Raman spectra, which supports the conclusions of the X‐ray structure analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new model is developed to describe the overtone spectra of polyatomic molecules containing XHn moieties. The infrared absorption is described as corresponding to excitation of localized modes of vibration rather than a set of symmetry allowed combinations of anharmonic normal modes. The possibility of assigning new bands in the more complex regions of the overtone spectra which involve combinations of both stretching and bending modes is examined and illustrated using the overtone spectrum of ammonia. The overtone spectrum of dichloromethane is recorded in the range λ = 9260 Å to λ = 5300 Å, and the CH overtone bands at 8850 Å, 7223 Å, and 6165 Å corresponding to the ΔvCH = 4, 5, and 6 overtones are identified. Specific features of these bands are discussed in detail in relation to the model. The common features and simplicity of the ΔvCH = 4 overtone bands of a series of halomethanes and ethanes are also interpreted in terms of the model.  相似文献   

8.
Fe(III)–nitrilotriacetate(NTA) aqueous solutions are used in various redox desulfurization processes. The nature of stable Fe–NTA complexes depends highly on parameters such as [Fe(III)] concentration, NTA/Fe ratio and pH value. These complexes can be characterized by potentiometric measurements or UV‐vis spectroscopy, but only at rather low concentrations. Using synthesis of solids, Raman spectra of these solids and ab initio calculations, a rational determination of the nature of complexes stable in water at high iron concentrations was proposed from the position sensitivity of the main low wavenumber band to the coordination sphere of iron cations. This band was assigned to ν(Fe N) stretching vibrations from ab initio calculations. Depending on the pH and NTA/Fe ratio of the prepared solutions, different species were identified from the Raman spectra. The present methodology can be extended to other metal–ligand systems to elucidate the nature of stable complexes in aqueous solution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectra of natrouranospinite complemented with infrared spectra were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectra of dumontite were measured at 298 and 77 K. Observed bands were attributed to the stretching and bending vibrations of uranyl and phosphate units and OH stretching vibrations of water molecules. U–O bond lengths in uranyls and approximate O–H···O bond lengths were calculated. The values of the U–O bond lengths are in agreement with the data from the single crystal structure analysis of dumontite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The mineral dussertite, a hydroxy‐arsenate mineral with formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman spectroscopy complemented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved to be quite similar, although some minor differences were observed. In the Raman spectra of the Czech dussertite, four bands are observed in the 800–950 cm−1 region. The bands are assigned as follows: the band at 902 cm−1 is assigned to the (AsO4)3−ν3 antisymmetric stretching mode, the one at 870 cm−1 to the (AsO4)3−ν1 symmetric stretching mode, and those at 859 and 825 cm−1 to the As‐OM2 + /3+ stretching modes and/or hydroxyl bending modes. Raman bands at 372 and 409 cm−1 are attributed to the ν2 (AsO4)3− bending mode and the two bands at 429 and 474 cm−1 are assigned to the ν4 (AsO4)3− bending mode. An intense band at 3446 cm−1 in the infrared spectrum and a complex set of bands centred upon 3453 cm−1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen‐bonded (OH) units and/or water units in the mineral structure. The broad infrared band at 3223 cm−1 is assigned to the vibrations of hydrogen‐bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3− and (AsO3OH)2− units. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper has reviewed all of the available work on the infra-red and Raman spectroscopy of hexagonal and cubic ice. It has been shown by the studies of Maisch (1956) and Ockman (1957) that it is not possible to obtain a unique solution to the structure problem of ice by measuring its polarized vibration spectrum. However, Maisch's observation of the constancy of the depolarization ratio across each of the bands in the hydrogen stretching region is a strong argument for a disordered structure.

Satisfactory assignments have only been made for the three bands originating in the fundamental modes of the water molecule and for the six strong bands which can be correlated with the overtone and combination modes of the liquid and vapour spectra. An explicit characterization of the low frequency bands in terms of lattice motions must await a solution to the lattice-dynamical problem as well as a careful study of the low frequency, polarized spectra of single crystals.

The solution to the dynamical problem of the ice lattice should make possible a determination of the crystal anharmonicities. This would then enable one to assign the overtone and combination bands.  相似文献   

13.
Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U OH bending vibrations, as well as H2O and (OH) stretching, bending and libration modes. U O bond lengths in uranyls and O H···O bond lengths were calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict, as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The kaolinite‐like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si O Si bridges, δ SiOSi and δ OSiO bending vibrations, ν (Si Oterminal) stretching vibrations, ν OH stretching vibrations of hydroxyl ions, and δ OH bending vibrations were attributed to the observed bands. Infrared bands in the range 3289–3470 cm−1 and Raman bands in the range 1590–1667 cm−1 were assigned to adsorbed water. O H···O hydrogen‐bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
绿松石的激光拉曼光谱研究   总被引:1,自引:0,他引:1  
对湖北、安徽地区绿松石进行了激光拉曼光谱测试分析。结果表明,绿松石中H2O,OH-及PO3-4的基团振动是导致其激光拉曼光谱形成的主要原因。3 510~3 440 cm-1的谱峰是由ν(OH)伸缩振动所致,其中ν(OH)振动导致的强拉曼特征谱峰在3 470 cm-1附近,ν(H2O)伸缩振动致拉曼谱峰位于3 290~3 070 cm-1附近的较为宽缓的弱谱峰处;由ν3(PO4)伸缩振动致强拉曼特征谱峰在1 200~1 030 cm-1之间,其中ν3(PO4)振动导致的强拉曼特征谱峰在1 039 cm-1附近,ν4(PO4)弯曲振动位于650~540 cm-1范围,ν2(PO4)的弯曲振动谱峰位于500~410 cm-1处;不同产地、不同结晶类型的绿松石表现出的拉曼谱峰特征基本一致。  相似文献   

16.
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U–OH bending vibrations and H2O and (OH)? stretching, bending and libration modes. U–O bond lengths in uranyls and O?H···O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and by bands that are significantly broader.  相似文献   

17.
Solid‐state protonated and N,O‐deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di‐amino acid peptide cyclo(L ‐Asp‐L ‐Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3‐LYP/cc‐pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L ‐Asp‐L ‐Asp), assuming C2 symmetry, predicts a boat conformation for the DKP ring with both the two L ‐aspartyl side chains being folded slightly above the ring. The CO stretching vibrations have been assigned for the side‐chain carboxylic acid group (e.g. at 1693 and 1670 cm−1 in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm−1 in the Raman spectrum). The presence of two bands for the carboxylic acid CO stretching modes in the solid‐state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm−1 in the solid‐state Raman spectrum, which is in agreement with results for cyclic di‐amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the Cα atom is increased, the amide II band wavenumber decreases to below 1500 cm−1; this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm−1), which indicates that this band has a smaller N H bending contribution than the trans amide II vibrational band observed for linear peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The formation of a charge transfer complex between pyridine and halogens or mixed halogens(1,2) brings about perturbations in the infrared spectra of the pyridine molecule and many halogen complexes show two bands in the low frequency range, which can be attributed to the v X-X and v N…Y stretching vibrations. (3–5). However, by comparison, very little has been reported on the Raman spectra of such complexes. Klaboe(6) studied the v Br-Br Raman frequency of some bromine complexes and more recently the Raman spectra of pyridine complexed with Ni (CN)4 (7) and TiCl4 (8) have been reported. In this work, the Raman spectrum of the 3-Br pyridine-bromine charge transfer complex is investigated.  相似文献   

19.
Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2·8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号