首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent synchrotron-based soft X-ray photoemission electron microscopy (X-PEEM) studies of protein and peptide interaction with phase segregated and patterned polymer surfaces in the context of optimization of candidate biomaterials are reviewed and a study of a new system is reported. X-PEEM and atomic force microscopy (AFM) were used to investigate the morphology of a phase-segregated thin film of a polystyrene/poly(methyl methacrylate)-b-polyacrylic acid (PS/PMMA-PAA) blend, and its interactions with negatively charged human serum albumin (HSA) and positively charged SUB-6 (a cationic antimicrobial peptide, RWWKIWVIRWWR-NH2) at several pHs. At neutral pH, where the polymer surface is partially negatively charged, HSA and SUB-6 peptide showed contrasting adsorption behavior which is interpreted in terms of differences in their electrostatic interactions with the polymer surface.  相似文献   

2.
In the present study the response of the fiber optic evanescent field absorption sensor has been analyzed experimentally. The dependence of evanescent absorbance on sample (dye) concentration has been found to be nonlinear, in contradiction to theoretical predictions. The amount of nonlinearity as well as evanescent absorbance has been found to depend on the pH of the sample. As the pH decreases, the amount of nonlinearity and evanescent absorbance decrease. It has been shown that the nonlinearity and high evanescent absorbance at high pH value occur because of the adsorption of the positively charged dye molecules on the surface of the silica core of the plastic-clad silica (PCS) fiber, which is generally used for the sensor. A linear response has been obtained at pH close to 2.0, at which the presence of a tremendous amount of H ions in the sample restricts the adsorption of the dye molecules. The following empirical relation has been found to fit the experimental data: gamma 1.1C 1.6(pH)32C 1 3, where gamma is the evanescent absorption coefficient and C is the concentration of the dye. The first term is due to the simple Beer's law while the second term is the contribution of the pH dependent dye adsorption. In addition, we have found that the increase in core diameter increases the contribution of adsorption.  相似文献   

3.
Ionic surfactants tend to accumulate in the interfacial region of ultrasonic cavitation bubbles (cavities) because of their surface active properties and because they are difficult to evaporate in cavitation bubbles owing to their extremely low volatilities. Hence, sonolysis of ionic surfactants is expected to occur in the interfacial region of the cavity. In this study, we performed sonochemical degradation of surfactants with different charge types: anionic, cationic, zwitterionic, and nonionic. We then estimated the degradation rates of the surfactants to clarify the surfactant behavior in the interfacial region of cavitation bubbles. For all of the surfactants investigated, the degradation rate increased with increasing initial bulk concentration and reached a maximum value. The initial bulk concentration to obtain the maximum degradation rate had a positive correlation with the critical micelle concentration (cmc). The initial bulk concentrations of the anionic surfactants were lower than their cmcs, while those of the cationic surfactants were higher than their cmcs. These results can be explained by the negatively charged cavity surface and the effect of the coexisting counterions of the surfactants.  相似文献   

4.
The binding of aspirin (ASA) and amlodipine (AML) to human serum albumin (HSA) in aqueous solution was investigated by multiple techniques such as fluorescence quenching, resonance light scattering (RLS), three-dimensional fluorescence spectroscopy, FT-IR and zeta-potential measurements in an aqueous solution at pH=7.4. For the protein-ligand association reaction, fluorescence measurements can give important clues as to the binding of ligands to proteins, e.g., the binding mechanism, binding mode, binding constants, binding sites, etc. Fluorescence spectroscopy showed that ASA and AML could quench the HSA fluorescence spectra, and this quenching effect became more significant when both ASA and AML coexisted. The results pointed at the interaction between HSA and both drugs as ternary systems decreasing the binding constant and binding stability of the HSA-drug complex as a binary system. Therefore, by reducing the amount of drugs transported to their targets, the free drug concentration of the target would be reduced, lowering the efficacy of the drugs. It was demonstrated that there exists antagonistic behavior between the two drugs when it comes to binding of HSA. Furthermore, the fluorescence results also showed that the quenching mechanism of HSA-drug complexes as binary and ternary systems is a static procedure. The number of binding sites of HSA-ASA, (HSA-AML)ASA, HSA-AML and (HSA-ASA) AML were 1.31, 0.92, 1 and 0.93, respectively. Due to the existence of the antagonistic action between ASA and AML, the binding distance r was reduced. The results of synchronous fluorescence and three-dimensional fluorescence spectra showed that the antagonistic action between ASA and AML would alter the micro-environment around Trp and Tyr residues. Moreover, the simultaneous presence of ASA and AML during binding to HSA should be taken into account in multidrug therapy, as it induces the necessity of a monitoring therapy owing to the possible increase of uncontrolled toxic effects. Molecular dynamic studies showed that the affinity of each of the drugs to HSA was reduced in the presence of significant amounts of the other. In the interaction of HSA with both drugs, the zeta potential of the ternary system is more negative than its binary counterpart. The zeta-potential results suggested induced conformational changes on HSA that confirmed the experimental and theoretical results.  相似文献   

5.
The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH?7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ?H and ?G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.  相似文献   

6.
The interaction of puerarin with human serum albumin (HSA) in pH 7.4 Tris-HCl buffer has been investigated by fluorescence, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy. The results revealed the presence of static type of quenching mechanism in the binding of puerarin to HSA. The association constants (Ka) between puerarin and HSA were obtained according to Modified Stern-Volmer equation. The calculated thermodynamic parameters indicated that the binding of puerarin to HSA was driven mainly by hydrophobic interaction. The competitive experiments of site markers suggested that the binding site of puerarin to HSA was located in the region of subdomain IIA (sudlow site I). Further, a chemometrics approach, parallel factor analysis (PARAFAC), was applied to resolve the measured three-way synchronous fluorescence spectra data of the competitive interaction between puerarin and warfarin with HSA. The concentration information for the three reaction components, warfarin, puerarin and puerarin−HSA, in the system at equilibrium was obtained simultaneously. The PARAFAC analysis indicated that puerarin in the puerarin-HSA complex was displaced by warfarin, which confirmed the binding site of puerarin to HSA was located in site I. Moreover, the results of CD and FT-IR spectra demonstrated that the secondary structure of HSA was changed in the presence of puerarin.  相似文献   

7.
Spectral and surface tension behavior of aqueous neutral red in the presence of sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfonate (SDSN) have been studied to understand the nature of the interactions in their submicellar concentration ranges. The variations in spectra and surface tension with variation in the concentrations of the surfactants suggest the formation of a 1:1 close-packed dye-surfactant ion pair, HNR+S between the acid form, HNR+ of the dye and the surfactant anion at very low concentrations of the surfactant below critical micelle concentration (cmc) of the pure surfactant. The dye-surfactant ion pair behaves like a nonionic surfactant having higher efficiency and lower cmc than that of the corresponding pure anionic surfactant. The ion pairs are adsorbed on the air/water interface at very low concentrations of the surfactant. As the concentration of the surfactant increases and the ion pairs form micelles of their own, the dye in the ion pair is protonated to form H2NR2+S. As the cmc of the pure surfactant is approached, the protonation equilibrium gradually reverses and pure surfactant ions gradually replace the ion pairs at the interface. Finally, a homogeneous monolayer of pure surfactant anions exists at the air/water interface and the dye remain solubilized in pure micelles above the cmc of the pure surfactant. The equilibrium constants, Kc for the close-packed protonated dye-surfactant ion pair (PDSIP) formation have been determined at varying pH. The submicellar interaction has been found to be stronger with SDS than SDBS. The plots of logarithm of Kc vs. pH have been found to be quite linear which consolidates the assumption of formation of the species, H2NR2+S. The interaction is driven by enthalpy as well as entropy.  相似文献   

8.
Molecular dynamics of pyronin B (PyB) and pyronin Y (PyY) in aqueous solution containing different surfactants were investigated by using absorption and fluorescence spectroscopy techniques. First, the interactions of PyB and PyY with the negatively charged surfactant sodium dodecyl sulphate (SDS) were investigated in the below and above critical micelle concentration (cmc). The H-aggregate formation of the dye compounds was observed for below the cmc of SDS surfactant. The absorbance of H-aggregate absorption band of PyB and PyY decreased according to the aggregate-monomer equilibrium by increasing SDS surfactant concentration towards the cmc. Therefore, equilibrium constants of the aggregate formation and oscillator strengths of monomer and aggregate of the dye compounds were calculated from spectral studies. Moreover, aggregate formation dynamics was discussed in terms of thermodynamic functions by using temperature studies. The interactions of PyB and PyY with the positively charged hexadecyltrimethylammonium bromide (CTAB) and neutral Triton X-100 (TX-100) were also studied and it was observed that there was no aggregate formation on the absorption and fluorescence spectra for below and above the cmc.  相似文献   

9.
In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer–Emmet–Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.  相似文献   

10.
Mn(Ⅱ),Co(Ⅱ)与HSA相互作用的荧光光谱研究   总被引:5,自引:0,他引:5  
用荧光光谱法研究了生理pH和等离子点(pH=5.30)时Mn(Ⅱ)、Co(Ⅱ)与HSA的相互作用。根据Forste非辐射能量转移理论,得到了不同pH时Mn(Ⅱ)、Co(Ⅱ)在HSA中的第一强结合位置与Trp-214残基间的距离。这一结果远大于文献报道值,根据Mn(Ⅱ)、Co(Ⅱ)在HSA中的结合部位及HSA的畴结构对这一显著差异进行了讨论。  相似文献   

11.
应用荧光光谱和紫外光谱对3,3’,4’,7-四羟基黄酮醇(FIS)与人血清白蛋白(HSA)的结合机理进行了表征。在生理pH7.4下,FIS对HSA的内源荧光有显著的猝灭现象,在实验浓度范围内(药物与蛋白质浓度比0.1至10之间)其荧光猝灭机理主要是静态猝灭。研究结果表明,FIS和HSA之间形成了1∶1的复合物,结合常数为(1.05±0.18)×105L·mol-1。利用紫外光谱研究了FIS在不同pH值条件下的解离行为,发现FIS在生理条件下以离子和中性分子的混合形式存在。与蛋白质的结合使FIS的紫外吸收光谱Ⅰ带发生了明显的红移(与中性分子相比红移幅度超过40nm),证明了药物分子离子状态以静电力与蛋白质发生结合。其紫外光谱的二阶导数谱显示,药物分子与蛋白质的结合可分为特征和非特征形式。由于激发态质子转移,与蛋白质的相互作用引起了FIS内源荧光发射峰强度的明显增加,进一步证实了它们与蛋白质的结合。  相似文献   

12.
It has been revealed by dynamic light scattering that human blood-plasma serum albumin (HAS) aggregates in the presence of heavy-metal salts (CsCl) and the size of the HSA aggregates depends linearly on the salt concentration. A parabolic dependence of the hydrodynamic radius of the HSA particles on the pH level of an HSA buffer solution with a maximum at the isoelectric point of HSA (pI 5.0) has been obtained. It has been established that aggregates of HSA molecules represent ellipsoids of revolution which are transformed into practically spherical complexes on addition of CsCl to a solution.  相似文献   

13.
The interaction between zinc-stabilized insulin and lecithin liposomal membranes was studied using DPH fluorescence anisotropy and light-scattering techniques. To ascertain a possible influence of a charge on the insulin molecule, experiments were performed at pH 4.5 (insulin possesses a positive charge) and at pH 7.4 (the charge of insulin is negative). Measurements at pH 4.5 revealed significant changes in scattered light intensity induced by the addition of insulin to lecithin liposomes. With increasing time of storage of liposomes the insulin effect became faster and more pronounced. At pH 7.4, significant changes in scattered light were registered only in the case of liposomes stored for 5 days. In these liposomes a peroxidation process of lecithin was revealed. No significant changes induced by insulin were observed in DPH fluorescence anisotropy either at pH 4.5 or at pH 7.4, which suggested the absence of an interaction of insulin with the hycrophobic core of liposomes. Thus, the observed changes in scattered light could be interpreted in terms of the insulin association to the liposomal surface in the case of phospholipid peroxidation and/or acidic pH.  相似文献   

14.
The dispersion characteristics of nanosize silicon carbide (SiC) suspension were investigated in terms of surface charge, particle size, rheological measurement and adsorption study. Ammonium polycarboxylate has been used as dispersant to stabilize the suspension. It was found that the isoelectric point (iep) of SiC powder was pHiep (4.9). The surface charge of powder changed significantly in presence of the ammonium polycarboxylate dispersant and iep shifted significantly towards lower acidic pH (3.6). The shift in iep has been quantified in terms of ΔG 0 SP, the specific free energy of adsorption between the surface sites and the adsorbing polyelectrolyte (APC). The values of ΔG 0 SP (−10.85 RT unit) estimated by the electro kinetic data compare well with those obtained from adsorption isotherms (−9.521 RT unit). The experimentally determined optimum concentration of dispersant required for maximizing the dispersion was found to be 2.4 mg/g of SiC (corresponding to an adsorbed amount of 1.10 mg/g), at pH 7.5. This is much below the full monolayer coverage (corresponding to adsorbed amount of 1.75 mg/g) of the particles surface by the dispersant. The surface charge quantity, rheological, pH, electro kinetic and adsorption isotherm results were used to explain and correlate the stability of the nanosize silicon carbide in aqueous media. At pH 7.5, where both SiC surface and APC are negatively charged, the adsorption of APC was low because of limited availability of favourable adsorption sites. In addition, the brush-like configuration of the adsorbed polymer prevented close approach of any additional dispersant; hence stabilization of the slurry happens at a comparatively lower concentration than the monolayer coverage.  相似文献   

15.
陆乃彦  元冰  杨恺 《物理学报》2013,62(17):178701-178701
制备了表面带阴/阳离子的多孔二氧化硅纳米颗粒, 通过QCM-D研究了颗粒在不同pH值环境下与磷脂膜的非特异性吸附情况. 结果表明, NH2-MSN 在4–8的pH值范围内与磷脂膜相互吸引, 而COOH-MSN由于与磷脂膜的电性始终保持一致而无法发生吸附现象. 本研究能够帮助理解和预测纳米颗粒与细胞膜间的相互作用, 为药物输运提供载体, 有助于多孔二氧化硅纳米颗粒在药物输运体系中的应用. 关键词: 多孔二氧化硅纳米颗粒 磷脂膜 非特异性吸附 QCM-D  相似文献   

16.
Mechanism of interaction and detailed physico-chemical characterization of the binding of four fluoroquinolones: levofloxacin, sparfloxacin, ciprofloxacin HCl and enrofloxacin with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. The stoichiometry of interaction was found to be 1:1 for all the drugs used. The association constants for the interaction were of the order of 104 in most cases. At low drug:protein ratios, a significant fraction of the added drug was bound. The predominant interactions involved are hydrogen bonding and Van der Waal’s interactions in the case of levofloxacin, hydrophobic interactions in the case of ciprofloxacin hydrochloride and enrofloxacin and hydrogen bonding, hydrophobic and electrostatic interactions in the case of sparfloxacin.The drug binding region did not coincide with that of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS). From the displacement of site-specific probes and site-marker drugs, it was concluded that ciprofloxacin hydrochloride is site II-specific while enrofloxacin is a site I-specific drug. Levofloxacin binds at both site I and site II with equal affinity. Sparfloxacin had higher affinity for site II than site I. It is also possible that sparfloxacin binds at the interface between site I and site II. Stern-Volmer analysis of the data showed that the quenching mechanism is predominantly collisional for the binding of ciprofloxacin HCl and enrofloxacin while both static and collisional quenching mechanisms are operative in the case of levofloxacin and sparfloxacin. High magnitude of the rate constant for quenching showed that the process is not entirely diffusion controlled. Circular dichroism (CD) spectroscopic studies showed that the presence of drugs did not cause any major changes in the secondary structure of HSA.  相似文献   

17.
A wealth of experimental data has verified the applicability of the Gouy-Chapman (GC) theory to charged lipid membranes. Surprisingly, a validation of GC by molecular dynamics (MD) simulations has been elusive. Here, we report a test of GC against extensive MD simulations of an anionic lipid bilayer solvated by water at different concentrations of NaCl or KCl. We demonstrate that the ion distributions from the simulations agree remarkably well with GC predictions when information on the adsorption of counterions to the bilayer is incorporated.  相似文献   

18.
Graphene nanoribbons are thin sheets of graphene showing exclusive characteristics such as better drug-loading capacity, adsorption on mammalian cells, greater surface area, and light-absorbing ability. The current research work is to develop metformin-adsorbed carboxyl-functionalized oxidized graphene nanoribbons and utilize drug repurposing for the treatment of oral cancer by activating photo-thermal radiation therapy. The nanoribbons are formulated by Hummer's method and evaluated for several characterization parameters like ATR- Fourier Transform Infrared (FTIR), Differential scanning calorimetry (DSC), topology, in vitro efficacy, ex vivo and in vitro cell line studies. The ATR-FTIR spectrum of formulated nanoribbons shows distinctive peak at 3370 cm−1 ( N H group) of metformin. The DSC specifies the incidence of steep endothermic crests at 235 °C ( C NH3). The in vitro and ex vivo drug release studies show enhanced drug release in acidic pH (6.4) than physiological pH (7.4) with photothermal radiation. The in vitro cell line studies are processed via two-way ANOVA that exhibits 67.74 ± 0.03% of % inhibition in presence of photothermal radiation. The study demonstrates higher inhibition of cancerous cells at lower concentration of drug and photothermal therapy in comparison to plain drug. The characteristic feature of graphene is used to develop targeted drug delivery system against the oral cancerous cells.  相似文献   

19.
We study the adsorption behaviors of rhodamine dyes on gold nanoparticles (Au NPs) depending on their surface charges. Rhodamine 6G (Rh6G) dye is tested comparatively for positively and negatively charged Au NPs prepared by the reduction of chitosan and citric acid, respectively. The adsorption of Rh6G is found to be weaker on the positively charged Au NPs, whereas more substantial aggregation is found on negatively charged Au NPs. An increase in the concentration of Au NPs enhances the surface‐enhanced Raman scattering (SERS) intensities only for the Au(−) NPs, whereas the Au(+) NPs do not exhibit any strong SERS signals. Our findings suggest that SERS and reciprocal fluorescence measurements of Rh6G can be used to estimate the surface charges and atomic percentages of Au NPs less than ∼5 ppm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, surface‐enhanced Raman scattering (SERS) spectra of 6‐propylthiouracil (6‐PTU) on Au surface and the interaction between 6‐PTU and human serum albumin (HSA) were studied. The Raman bands were assigned by the density functional theory calculations at the B3LYP/6‐311++g(d,p) level. Furthermore, the effects of concentration on the SERS spectra of 6‐PTU were analyzed. It shows that with the changes of the concentrations of 6‐PTU, the SERS spectra of 6‐PTU present significant changes, and it can be concluded that with the changing of concentrations, the orientation of 6‐PTU on Au surface also changes. In addition, the SERS spectra of the interaction between 6‐PTU and HSA show that the binding sites of 6‐PTU to HSA are the functional groups N3H and CO. The information will not only be references to the study of the mechanism of the interaction between drugs and blood plasma or serum albumin but also a guidance to understand the metabolism of drugs in human body. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号