首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In 2006, the Au–C22H14 with a covalent bond between an individual pentacene (C22H14) and a gold (Au) atom was synthesised and characterised, and its nonlinear optical (NLO) properties were explored. To further investigate the NLO properties from molecules to materials, three kinds of different dimers (Au–C22H14)2 (2, 3 and 4) were designed to probe the monomer accumulation modes on the structures and NLO properties. The results indicate that Au atoms doping breaks the conjugate structures of the two pentacenes to different extent. On the other hand, their NLO properties investigated by three density functional theory methods Becke-Half-and-Half-LYP (BHandHLYP), Coulomb-attenuating method Becke-3-Lee–Yang–Parr (CAM-B3LYP) and Minnesota 2005 double the amount of nonlocal exchange (M05-2X) show the same order, and 2 has the largest first hyperpolarisability (βtot) than the other molecules. At the same time, natural bond orbital analysis shows the Au atoms play a crucial role in pushing electron density. Meanwhile, the frontier molecular orbital analysis shows that charge transfer has occurred between the two pentacene molecules and Au atoms. As a result, the order of transition energy is opposite to the order of βtot values. Because the pentacene is taken as a simplified fragment of the graphene, our present work may be beneficial to the development of high-performance NLO materials.  相似文献   

2.
Binary mixed thin films of picene (C22H14, PIC) and pentacene (C22H14, PEN) consist of crystallites with a statistical occupation of the lattice sites by either PEN or PIC and unit cell parameters continuously changing with the mixing ratio. For high PIC ratios a PIC phase forms which corresponds to a limited intermixing of the two compounds. The growth behavior of these mixtures is investigated in situ and in real‐time using grazing incidence X‐ray diffraction. We observe a delayed phase separation in PIC‐rich blends, i.e. complete intermixing in the monolayer range and the nucleation of a pure PIC‐phase in addition to the intermixed phase starting from the second monolayer.

Growth scenario of picene‐rich pentacene‐picene blends.  相似文献   


3.
We investigate the morphology of a pentacene (C22H14) film adsorbed on the Cu(1 1 9) vicinal surface by scanning tunnelling microscopy (STM). Thermal treatment of a thick film of molecules generates a long-range ordered structure. Series of molecular rows are alternated with areas where the molecules assume two equivalent orientations. STM data analysis suggests that the ordered structure can be described by a rippled morphology. The behaviour of the film at different annealing temperatures suggests a possible explanation of the film structure as due to an adsorbate-induced modification of the substrate.  相似文献   

4.
The electronic structure of vacuum-sublimed layered organic heterostructures of pentacene (PEN) and fullerene (C60) on conducting polymer substrates was investigated using ultraviolet photoelectron spectroscopy (UPS). The conditions at the PEN/C60interface changed from thermodynamic non-equilibrium (i.e. the onset of the PEN highest occupied molecular orbital above the substrate Fermi-energy) for thin PEN coverages on C60 to thermodynamic equilibrium for thicker PEN coverages (i.e. Fermi-level pinning of PEN). This finding is attributed to a coverage-dependent pinhole connection of PEN through the C60 layer with the substrate. The experiments demonstrate the importance of organic thin film morphology for UPS measurements to assess the energy level alignment at organic/organic heterointerfaces.  相似文献   

5.
We advance a new spectroscopic criterion for the identification of the threshold of the vibrational quasicontinuum (VQ) in large molecules, which rests on the observation of an onset for a congested vibrational level structure in the electronically excited states of isolated ultracold molecules seeded in supersonic beams. The onset of the VQ in tetracene (C18H12), pentacene (C22H14) and ovalene (C32H14) is exhibited at the excess vibrational energies of 2000 cm-1 -1000 cm-1.  相似文献   

6.
Thin films of pentacene (C22H14) have become widely used in the field of organic electronics. Here films of C22H14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented.XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10°.  相似文献   

7.
H2S, H2 and S adsorbed on Ru(110) have been studied by angle-integrated ultraviolet photoemission (UPS) as part of a study of the effect of adsorbed sulfur, a common catalytic poison, on this Ru surface. For low exposures of H2S at 80 K, the work function rises to a value 0.16 eV above that of clean Ru(110) while the associated UPS spectra (hν = 21.2 eV) exhibit features similar to those of H(ads) and S(ads) and different from those of molecular H2S. We conclude that H2S dissociates completely at low coverages on Ru(110) at 80 K. At intermediate exposures the work function drops and the UPS spectra show new features which are attributed to the presence of an adsorbed SH species. This appears to be the first direct observation of this surface complex. At higher exposures the work function saturates at a value 0.36 eV below the clean value; the UPS spectra change markedly and indicate the adsorption of molecular H2S. Heating adsorbed H2S leaves a stable layer of S(ads) on Ru(110). The surface with adsorbed sulfur strongly modifies the adsorption at 80 K of a number of molecules relative to the clean Ru(110) surface.  相似文献   

8.
Spatially resolved images of an individual C60F36 fluorofullerene molecules on Si(111)-7 × 7 surface have been obtained by means of scanning tunneling microscopy/spectroscopy (STM/STS). The presence of isomers with different symmetry (T, C 3, C 1) has been revealed in STM investigation of initial adsorption stage of C60F36 on silicon surface Si(111)-(7 × 7). The adsorbed fluorofullerene molecule can occupy any adsorption site of silicon surface (corner site, faulted half, unfaulted half) that indicates for strong molecule-substrate interaction. The HOMO-LUMO gap of the adsorbed C60F36 molecules have been estimated from current image tunneling spectroscopy (CITS) and z(V) with engaged feedback measurements. The value of HOMO-LUMO gap observed experimentally was 3 eV. The C60F36 molecules adsorption on Si(111)-(7 × 7) surface was stable and kept equilibrium configuration during several hours.  相似文献   

9.
There have been numerous attempts to use ultraviolet photoemission spcctroscopy (UPS) to monitor the chemical states of adsorbed gas molecules on metal surfaces. To interpret the data correctly, one has to determine the effect of photoemission on the measured energy levels of the molecule. We have measured the UPS spectra of seven gases (C6H6, C5H5N, CH3OH, C2H5OH, H2CO, H2O, NH3) condensed on a LN2 cooled MoS2 substrate at hv = 21.2 eV. The inertness of the MoS2 substrate assures that no strong chemical bonding exists between the substrate and adsorbed molecules. For each gas, the spectrum of the condensed phase is similar to the corresponding spectrum of the gas phase except all the energy levels are shifted up by the same amount. This shift ranges from 1 to 1.65 eV for the gases studied. The energy shift is attributed to the dielectric screening of the hole produced during the optical excitation.  相似文献   

10.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

11.
Monolayer adsorption of pure ethylene on the (111) surface of saver at 80 K has been studied by X-ray (hv = 1486.6 eV) and ultraviolet (hv = 21.2 and 40.8 eV) photoelectron spectroscopy. The density of the adlayer is approximately 5 × 1014 molecules/cm2 at saturation, multilayer formation being prohibited by the ultrahigh vacuum of the spectrometer. The molecular orbitals designated σ1CH, σCC, σCH and 2ss1 by Demuth are observed at 7.0, 9.0, 10.3 and 13.6 eV below the Fermi level, respectively, but the higher lying π level is obscured by the silver d-band emission. The data are consistent with an undistorted molecule, adsorbed with the molecular axis parallel to the surface. Desorption occurs below 200 K without significant decomposition products remaining on the surface in agreement with the conventional notion that clean silver is relatively inert with respect to olefin adsorption.  相似文献   

12.
Molecular-dynamics simulations (MDSs) and ab initiocalculations are used to investigate the adsorption behavior of C60 molecules on a clean dimer-reconstructed (100)(2×1) diamond surface. C60 molecules have some probability to be adsorbed on the diamond surface at low incident energy (6∼45 eV). Electron-density contours show strong chemical interaction between C60 molecules and the substrate surface. The adsorption property depends strongly on the incident energy and the impacting point. An incident energy of 18 eV may be an appropriate energy to grow a sub-monolayer or monolayer C60 film on a clean C(100)(2×1) surface at room temperature. Received: 5 July 2000 / Accepted: 17 October 2000 / Published online: 28 February 2001  相似文献   

13.
We have studied the interaction of pentacene with a Cu(1 1 1) surface using density functional theory (DFT) within a generalized gradient approximation (GGA) and the van der Waals density functional [vdW-DF, M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92 (2004) 246401]. The adsorption energy is accurately predicted by vdW-DF, while the equilibrium distances between pentacene and the metal substrate (ZC) are overestimated by both GGA and vdW-DF. The work function changes depend significantly on ZC. The experimental work function change can be successfully reproduced by GGA if the experimentally reported adsorption geometry is used, whereas the magnitude of the work function change is underestimated if calculated adsorption geometries are applied. We examined the IDIS model [H. Vázquez, R. Qszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, A. Kahn, Europhys. Lett. 65 (2004) 802] to compare it with the GGA results. The interface dipoles estimated by the IDIS model fairly agree with the GGA results, provided that the adsorption distance is large. On the other hand, they tend to deviate from the GGA results as the adsorption distance becomes smaller, where back donation from the metal surface to the adsorbate occurs. Our analysis reveals that at experimentally reported metal–organic distance, back donation is significant enough to induce polarization of pentacene molecules perpendicular to the surface, which leads to a reduction of the work function. Thus, at the experimentally reported metal–organic distance, the work function change estimated by a simple IDIS model deviates from that calculated by self-consistent GGA calculations. We also found that at the experimentally reported metal–organic distance, the transferred electrons create weak chemical bonds between pentacene and the Cu(1 1 1) surface, illustrating the reactive nature of pentacene.  相似文献   

14.
童国平 《物理学报》1999,48(2):213-217
根据C60分子的结构特征,构造了电子的局域波函数,在该函数表象下计算了电子格点之间的跳跃能量.对不等性sp3杂化,通过优化计算,当有效核电荷数Z=1.112时,得到的能隙(最低未占据轨道(LUMO)与最高占据轨道(HOMO)之间的能量差)、能带宽度以及电离能阈值分别为1.70eV,12.19eV和8.13eV.这与实验结果符合得较好.与之相应的电子跳跃能量是:最近邻分别为-2.299eV,-2.113eV;次近邻分别为0.103eV,0.170eV;三近邻分别为 关键词:  相似文献   

15.
《Physics letters. A》2020,384(21):126532
Based on the first principles calculations, we have systematically investigated the electronic structures of Cu2Si/C2N van der Waals (vdW) heterostructures. We discovered that the electronic structures of Cu2Si and C2N monolayers are preserved in Cu2Si/C2N vdW heterostructures. There is a transition from the n-type Schottky contact to Ohmic contact when the interfacial distance decreases from 4.4 to 2.7 Å, which indicates that the Schottky barrier can be tuned effectively by the interfacial distance. Meanwhile, we find that the carrier concentration between the Cu2Si and C2N interfaces in the vdW heterostructures can be tuned. These findings suggest that the Cu2Si/C2N vdW heterostructure is a promising candidate for application in future nanoelectronics and optoelectronics devices.  相似文献   

16.
Thermal desorption of bromine and iodine from an ionizer surface made of cold pressed and sintered LaB6 powder has been studien in the temperature interval 800–1300°C. A new technique, where the extraction field is accelerating only during short intervals, has been developed to monitor separately the neutral desorption of readily ionized elements. The technique has been combined with the modulated beam and the modulated voltage methods for measurements of residence times and ionization efficiencies. It has also been combined with the temperature programmed desorption method used for determination of the Arrhenius parameters of desorption. The following values were obtained for l? and l0, the activation energies of ionic and neutral desorption, and for the corresponding pre-exponential factors C and D (D = 4C) for halogens): Bromine: l? = 3.8 eV, l0 = 4.3 eV, C = 2.0 × 1013 s?1; Iodine: l? = 3.4 eV, l0 = 3.7 eV, C = 1.1 × 1013 s?1. The ionization efficiencies measured at 1100°C, 0.95 for bromine and 0.7 for iodine, correspond well to what is given by the Saha-Langmuie equation using a work function of 2.7 eV. All measurements were performed with the number of adsorbed particles well below 1017 atoms/m2. For higher coverages l? was found to increase linearly by about 0.15 eV for an adsorption of 1018 atoms/m2.  相似文献   

17.
Thermal desorption spectra taken after adsorption of carbon monoxide at room temperature on W(210) show sequential formation with increasing coverage of strongly bound β2 and β1 binding states, correlated to the sequential formation of P(2 × 1) and (1 × 1) adsorbate structures as observed by LEED. Adsorption at room temperature gives a poorly ordered arrangement of adsorbed CO molecules, but well-ordered structures are produced by subsequent anneal. For adsorption without anneal the work function increases monotonically with coverage to a maximum of Δφ = + 0.70 eV at saturation coverage of 1 monolayer. For adsorption followed by anneal the work function dependence upon coverage is less simple, with even a decrease of work function at coverages less than a quarter monolayer. LEED intensity-voltage measurements from P(2 × 1)CO and P(2 × 1)N structures suggest that CO molecules occupy the sites of 4-fold symmetry upon which nitrogen is believed to be adsorbed. The distinction between the β2 and β1 states of adsorbed CO is attributed to heterogeneity induced by the reduction in binding energy of a CO molecule when its nearest-neighbor sites are occupied.  相似文献   

18.
Thermal desorption and work function measurements indicate that a largely molecular layer, with some dissociation, is formed at 80–100 K, with an increase in work function of 0.55 eV. The coverage in this layer is 11.5 × 1014 molecules/cm2, or CO/W = 1.15. On heating, equal amounts of a β precursor, possibly dissociated, and a molecular α species are formed at ≈300 K, with abundances of 5 × 1014 molecules/cm2 each. The α desorption is complete at 360 K. The β precursor evolves on heating without desorption in the range 400–700 K as indicated by work function decreases, to β-CO, which is almost certainly dissociated. This change occurs at lower temperatures for low coverages. Thermal desorption shows 3 peaks, which have been traditionally labelled β1, β2, and β3 at 930, 1070, and 1375 K. Of these only β3 corresponds to a well defined state. Readsorption after heating to 950 or 1150 K results in a doubly peaked spectrum at 1070 and 1375 K. The β1 and β2 peaks obey complex desorption kinetics, probably corresponding to desorption and rearrangement. The coverage of β3 is 2.5 × 1014 molecules/cm2, suggesting that the c(2 × 2) LEED pattern corresponds to occupany of every other unit cell by a C or an O atom. For coverages ? 1.5 × 1014 molecules/cm2 β3 desorption obeys second order kinetics with an activation energy of 83 ± 3 kcal/mole. For β3 the work function decreases from the clean W value by 0.1 eV, suggesting adsorption of C and O in the center of the W unit mesh, below the surface layer of W atoms. Readsorption on β and β precursor layers leads to formation of electropositive α-CO, with a multiply peaked thermal desorption spectrum, indicating the existence of different binding sites. Adsorption-heatingreadsorption, -heating-readsorption sequences indicate that additional changes in the α desorption spectrum occur, suggesting reconstruction in the β layer.  相似文献   

19.
Pentacene (C22H14) thin films with different thicknesses were fabricated to study the dynamic growth process and morphology of pentacene on different substrates. A discontinuous monomolecular layer was observed when a pentacene thin film is about 0.5 nm thick on native oxide silicon wafer. The terraced islands and dendritic structure gradually formed with increasing pentacene thin film thickness. The height of each layer is about 1.4 nm which corresponds well with the length of the long axis of the pentacene molecule at 1.45 nm. Experimental results show that the pentacene molecule is perpendicular to the silicon wafer surface with a slight tilted angle. However, the pentacene molecular orientation on a polymer pre-covered indium tin oxide coated substrate could not give any indication on the scale of nanometers. The surface roughness of substrates strongly influences pentacene molecular diffusion and the morphology of pentacene thin films.  相似文献   

20.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号