共查询到18条相似文献,搜索用时 31 毫秒
1.
一种改进的DNN-HMM的语音识别方法* 总被引:1,自引:1,他引:1
针对深度神经网络与隐马尔可夫模型(DNN-HMM)结合的声学模型在语音识别过程中建模能力有限等问题,提出了一种改进的DNN-HMM模型语音识别算法。首先根据深度置信网络(DBN)结合深度玻尔兹曼机(DBM),建立深度神经网络声学模型,然后提取梅尔频率倒谱系数(MFCC)和对数域的Mel滤波器组系数(Fbank)作为声学特征参数,通过TIMIT语音数据集进行实验。实验结果表明:结合了DBM的DNN-HMM模型相比DNN-HMM模型更具优势,其中,使用MFCC声学特征在词错误率与句错误率方面分别下降了1.26%和0.20%。此外,使用默认滤波器组的Fbank特征在词错误率与句错误率方面分别下降了0.48%和0.82%,并且适量增加滤波器组可以降低错误率。总之,研究取得句错误率与词错误率分别降低到21.06%和3.12%的好成绩。 相似文献
2.
深度学习在超声检测缺陷识别中的应用与发展* 总被引:1,自引:1,他引:0
深度学习(Deep Learning)是目前最强大的机器学习算法之一,其中卷积神经网络(Convolutional Neural Network, CNN)模型具有自动学习特征的能力,在图像处理领域较其他深度学习模型有较大的性能优势。本文先简述了深度学习的发展史,然后综述了深度学习在超声检测缺陷识别中的应用与发展,从早期浅层神经网络到现在深度学习的应用现状,并借鉴医学影像识别和射线图像识别领域的方法,分析了卷积神经网络对超声图像缺陷识别的适用性。最后,探讨归纳了目前在超声检测图像识别中使用CNN存在的一些问题,及其主要应对策略的研究方向。 相似文献
3.
水下目标多模态深度学习分类识别研究 总被引:2,自引:0,他引:2
水下目标的分类识别对于水声探测具有重要意义。提出一种水下目标多模态深度学习分类识别方法。针对水声信号的一维时域模态和二维频域模态特征建立一种多模态特征融合的深度学习结构,结合长短时记忆网络和卷积神经网络的优点,对一维时域信号和二维频谱信号分别进行并行处理,对输出进行典型相关分析,形成特征融合表示,并利用相邻帧的相关性进行参数优化。利用实测水声信号对算法进行了验证。结果表明:提出的算法对于水下目标识别的精度有显著的提高。 相似文献
4.
5.
为了克服现有气体泄漏检测方法的不足,提出一种基于卷积神经网络的气体泄漏超声信号识别方法。在设计卷积神经网络网络结构时,通过多次预训练确定网络层数、卷积核数目和尺寸、全连接层神经元数目。同时,选择Inception模块平衡网络宽度和深度,防止过拟合的同时提高网络对尺度的适应性。通过输气管道泄漏实验平台模拟工况中常见的阀门泄漏和垫片泄漏,利用短时傅里叶变换进行时频图表征,在此基础上,建立二分类模型和不同泄漏类型的三分类模型。结果表明,相比二分类模型,不同泄漏类型的三分类模型识别准确率有所降低,添加Inception模块可以有效提高三分类模型的性能。 相似文献
6.
基于改进卷积神经网络算法的语音识别 总被引:1,自引:1,他引:0
为了解决传统卷积神经网络识别连续语音数据时识别性能较差的问题,提出一种改进的卷积神经网络算法。该方法引入Fisher准则以及L2正则化约束,在反向传播调整参数阶段,既保证参数误差的最小化,又确保分类以后的样本类间分布较分散,类内分布较集中,同时保证网络权值具有合适的数量级以有效缓解过拟合问题;采用一种更符合生物神经元激活特性的新型log激活函数进行卷积神经网络的优化,进一步提高语音识别的正确率。在语音识别库TIMIT以及THCHS30上的实验结果表明,相较于传统卷积神经网络算法,本文提出的改进算法能较好的提高语音识别率,且泛化能力更强。 相似文献
7.
针对干扰或噪声环境下水声目标信号难以获取的问题,该文提出研究基于深度神经网络的自适应水声被动信号波形恢复方法。在单阵元情况下,该方法提取对数功率谱特征作为输入,采用深度神经网络回归模型自适应学习目标信号的自身特征,输出降噪后的对数功率谱特征并还原时域波形。在多阵元情况下,提出阵列深度神经网络降噪方法,将部分或全部阵元特征拼接为长向量作为输入,从而利用空域信息。为全面利用阵列丰富的时频域信息,该文提出一种两阶段特征融合深度神经网络,在第一阶段将阵列分为若干个子阵,将每个子阵分别用阵列深度神经网络进行处理,在第二阶段将第一阶段的各子阵处理结果与阵列接收信号同时输入一个深度神经网络进行融合学习。实验表明,所提出的单阵元和两阶段融合深度神经网络取得了显著优于常规波束形成的恢复结果,能够准确估计目标信号波形和功率并显著提高输出信噪比。 相似文献
8.
9.
针对水中目标特征类型多、非线性强的特点,本文将K-KNN应用于水中目标识别。该方法采用PCA对特征矩阵进行降维,利用Kernel技巧将降维后的特征映射到高维空间进行KNN分类识别,并讨论了邻近点个数K对试验结果的影响。实际试验数据验证结果表明:与传统的KNN和BP神经网络分类器相比,K-KNN分类器的综合性能更优。 相似文献
10.
11.
当前基于深度神经网络模型中,虽然其隐含层可设置多层,对复杂问题适应能力强,但每层之间的节点连接是相互独立的,这种结构特性导致了在语音序列中无法利用上下文相关信息来提高识别效果,而传统的循环神经网络虽然做出了改进,但是只能对上文信息进行利用。针对以上问题,该文采用可以同时利用语音序列中上下文相关信息的双向循环神经网络模型与深度神经网络模型相结合,并应用于语音识别。构建具有5层隐含层的模型,其中第3层为双向循环神经网络结构,其他层采用深度神经网络结构。实验结果表明:加入了双向循环神经网络结构的模型与其他模型相比,较好地提高了识别正确率;噪声对双向循环神经网络汉语识别有重要影响,尤其是训练集和测试集附加噪声类型不同时,单一的含噪声语音的训练模型无法适应不同噪声类型的语音识别;调整神经网络模型中隐含层神经元数量后,识别正确率并不是一直随着隐含层中神经元数量的增加而增加,神经元数量数目增加到一定程度后正确率出现了降低的趋势。 相似文献
12.
13.
通过对目标特征的分析比较,选取不变矩作为识别特征.为了达到很好的识别效果,对不变矩做了优化处理.采用LVQ神经网络技术建立了识别模型,提高了识别速度.运用有限的样本对目标识别技术进行了测试,结果表明采用此技术后的识别成功率较高,平均约为98%,识别速度快,每幅二值目标图像的识别时间约为16 ms. 相似文献
14.
15.
提出一种基于格拉姆角场(GAF)和卷积神经网络(CNN)的水下目标有源识别方法。该方法利用GAF将目标回波信号编码为二维图像, 使用空洞卷积构建轻量级的卷积神经网络GAF-D3Net实现对目标的特征提取与分类识别。实验表明, 与基于传统图像特征的分类方法相比, 所提方法的分类精度有显著提高, 达到99.65%。在泛化性测试中, 对比了经典CNN使用声呐图像的迁移学习方法, 本文方法的曲线下面积(AUC)达到89%, 具有更好的泛化性能以及抗干扰能力, 为实现水下目标有源识别提供了一种可靠方法。 相似文献
16.
为了对成像引信探测得到的变形严重的图像进行识别,提出了基于蚁群优化与人工神经网络相结合的坦克目标识别算法.采用SUSAN特征检测原则提取目标图像的角点特征,作为神经网络模式分类器的输入.针对BP网络收敛速度慢,易于陷入局部极小点等问题,利用蚁群优化算法训练网络权值,可兼有ANN的广泛映射能力和蚁群算法的全局收敛以及启发式学习等特点.仿真实验表明,新算法能够有效缩短网络训练时间,提高目标识别精度. 相似文献
17.
18.
现有助听器往往将声反馈、噪声和混响问题独立优化, 约束了其性能上限, 为此提出了一种两阶段端到端深度学习联合声反馈抑制和去噪去混响方法。该方法首先在助听器临界稳定工作状态通过闭环系统仿真构造大量的带噪带混响带声反馈的数据, 其次通过离线联合训练的方式完成两阶段网络模型预训练, 最后将预训练好的模型应用于闭环系统中实现低时延声反馈、噪声和混响的同步抑制。以实录声反馈路径进行助听器系统闭环仿真测试的客观实验结果表明, 相比于传统处理算法、只考虑混响和噪声的模型和只采用单阶段网络训练的模型, 所提方法在语音质量感知评估测度、扩展的短时客观可懂度和加权频带分段信噪比等客观指标上均具有显著优势。 相似文献