首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
The proximity effect was studied in a thin-film Fe-Cr-V-Cr-Fe layered system. As the chromium layer thickness (dCr) increases at a fixed thickness of iron layers (dFe), the dependence of the superconducting transition temperature (Tc) on dCr exhibits a maximum at dCr ? 40 Å followed by a sharp decrease. Investigation of the dependence of Tc on dFe at a fixed dCr showed that the depth of penetration of the Cooper pairs into a chromium layer does not exceed 40 Å. Analysis of the results obtained suggests that, at dCr ? 40 Å, chromium layers exhibit the transition from a nonmagnetic state to an incommensurate spin density wave state.  相似文献   

2.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

3.
We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of theIsing model, employing the Glauber spin-flip mechanism, in space dimensionsd = 2 and3, on square and simplecubic lattices. Results for the persistence probability and the domain growth arediscussed for quenches to various temperatures (T f ) below the criticalone (T c ), from differentinitial temperatures T i T c . In long timelimit, for T i >T c ,the persistence probability exhibits power-law decay with exponents θ ? 0.22 and? 0.18 in d = 2 and 3, respectively. For finite T i , the early timebehavior is a different power-law whose life-time diverges and exponent decreases asT i T c . The two steps areconnected via power-law as a function of domain length and the crossover to the secondstep occurs when this characteristic length exceeds the equilibrium correlation length atT =T i . T i =T c is expected toprovide a new universality class for which we obtain θθ c ? 0.035 ind = 2 and?0.105 in d = 3. The time dependenceof the average domain size ?, however, is observed to be rather insensitive tothe choice of T i .  相似文献   

4.
A new approach is proposed for calculating the Debye temperature of a nanocrystal in the form of an n-dimensional rectangular parallelepiped with an arbitrary microstructure and the number of atoms N ranging from 2n to infinity. The geometric shape of the system is determined by the lateral-to-basal edge ratio of the parallelepiped. The size dependences of the Debye and melting temperatures for a number of materials are calculated using the derived relationship. The theoretical curves thus obtained agree well with the experimental data. The calculated dependences of the superconducting transition temperature T c on the size d of aluminum, indium, and lead nanocrystals are also in reasonable agreement with the experimental estimates of T c (d). It is demonstrated that, as the nanocrystal size d decreases, the greater the deviation of the nanocrystal shape from an equilibrium shape (in our case, a cube), the higher the temperature of the superconducting transition T c (d). The superconducting transition temperature is calculated as a function of the thickness (diameter) of a plate (rod) with an arbitrary length. It is found that a decrease in the thickness (diameter) of the plate (rod) leads to an increase in the temperature T c (z): the looser the microstructure of the metallic nanocrystal, the higher the temperature T c (z).  相似文献   

5.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

6.
The effect of ion irradiation on the superconducting transition temperatureT c and resistivityρ ab (T) of YBa2Cu3O7-x films with different oxygen content (initial temperatureT c0≈90 K and 60 K) is studied experimentally. The dependenciesT c /T c0 on residual resistivityρ o are obtained in very wide range 0.2<T c /T c0 <1 andρ o μΩ·cm. The critical values ofρ o , corresponding to the vanishing of superconductivity, are found to be an order of magnitude larger then those predicted by theory ford-wave pairing. At 0.5÷0.6<T c /T c0<1 the experimental data are in close agreement with theoretical dependencies, obtained for the anisotropics-wave superconductor within the BCS-framework.  相似文献   

7.
A formula for the contribution ΔG res(T) to the resonant tunneling conductance of the N–I–N junction (where N is a normal metal and I is an insulator) with a weak (low impurity concentrations) structural disorder in the I layer from the low-temperature “smearing” electron Fermi surfaces in its N shores is obtained. It is shown that the temperature dependence ΔG res(T) in such a “dirty” junction qualitatively differs from the corresponding dependence ΔG 0(T) in a “pure” (without resonant impurities in the I layer) junction: ΔG res(T) < 0, dG res)/dT < 0; ΔG 0(T) > 0, dG 0)/dT > 0, which can serve as an experimental test of the presence of impurity tunneling resonances in the disordered I layer.  相似文献   

8.
The anomalous behavior of the isochoric heat capacity of a mixture of methane, pentane and heptane is studied experimentally in the vicinity of the liquid-vapor critical point in the cases when (a) the critical temperature T c approaches the tricritical point T TCP and (b) the critical temperature approaches the upper critical end point T U . It is shown that in all cases, the singular part of the heat capacity of the mixture has the form Csing=A¦τ¦, where τ=(T ? T c )/T c and α≈0.11. When T c T U , amplitude A of the heat capacity anomaly is found to be approximately constant. At the same time, the amplitude of the anomaly tends to zero in the vicinity of the tricritical point: A∝¦τc¦ε, where τc=(T c ? T TCP )/T TCP and ε=1.6?1.7. The inevitable vanishing of this mode of the heat capacity anomaly leads to a negative value of the critical index \(\tilde \alpha\) characterizing the heat capacity anomaly at the tricritical point, while the tricritical point theory and the isomorphism hypothesis predict \(\tilde \alpha = 0.5\).  相似文献   

9.
The imaginary parts of microwave conductivity σ″(T<Tc) and resistivity ρ (T)=1/σ(T>Tc) along (σ ab and ρab) and across and (σ c and ρc the cuprate ab planes of a YBa2Cu3O7?x crystal with the oxygen doping level x varying from 0.07 to 0.47 were measured in the temperature range 5≤ T≤200 K. In the superconducting state, the σ ab (T)/σ ab (0) and σ c (T c (0) curves coincide for an optimally doped (x=0.07) crystal, but, with an increase in x, the slopes of the σ c (T)/σ c (0) curves decrease noticeably at T<Tc/3, on the background of small changes happening to the σ ab (T ab (0) curves. The two-dimensional (2D) transport along the ab planes in the normal state of YBa2Cu3O7?x is always metallic, but there is a crossover (at x=0.07) from the Drude to hopping (at x>0.07) conductivity along the c axis. This is confirmed both by the estimates of the lowest metallic and the highest tunneling conductivities along the c axis and by quantitative comparison of the measured ρc(T) curves with the curves calculated in the polaron model of quasiparticle transport along the c axis.  相似文献   

10.
The dependence of the magnetization relaxation rate S = ?d lnM/dlnt on temperature T is measured in YBa2Cu3O7 ? δ samples with various oxygen concentrations. It is found that the S(T) curve changes qualitatively when oxygen deficit δ exceeds the threshold value δth = 0.37. For δ < δth (T c > 60 K, where T c is the superconducting transition temperature), function S(T) has the well-known peak at T/T c = 0.4. For δ > δth (at T c < 51 K), this peak transforms into a plateau and a new sharp peak appears at T/T c = 0.1. The threshold value δth of the oxygen deficit corresponds to the transition of the sample from the disordered state into the ordered state of oxygen vacancies. We consider the change in the shape of the S(T) curve as a macroscopic manifestation of this transition.  相似文献   

11.
The transition temperatureT c and the critical fieldH c of lead were measured as a function of the concentration of lattice defects. The defects were generated by plastic deformation at liquid Helium temperatures and reduced by annealing. T c is rather insensitive to defects. With increasing residual resistance ratio ρ the transition temperature increases and finally reaches a constant value with onlyΔT c ≈4.5 · 10?3 °K. On the other hand a deformation of the same amount increasesH c more than twice as much as the starting value. Annealing to room-temperature reducesρ, T c andH c to their initial values. During the annealing process,T c shows a distinct maximum and ρ a marked step. Contrary to this behaviourH c decreases linearly during the whole region of annealing. Taking into account the strong influence of ρ uponH c a picture is given about the mechanism of deformation, which allows to understand the results qualitatively. The changes ofT c produced by elastic strain were also measured. The results are in quantitative agreement with those of pressure experiments.  相似文献   

12.
The Co/CaF2/Si(001) heterostructures with the corrugated (110) surface of the CaF2 buffer layer have been grown by molecular beam epitaxy. The structures are nanoparticle arrays of single-crystal Co, mostly of the cubic fcc modification. The behavior of the magnetic hysteresis loops as a function of the density of coverage of the substrate by cobalt islands, the island size, and the temperature is studied using the magnetooptical technique. At low coverage densities, where the effective cobalt film thickness d eff is less than the critical value d eff c , the magnetic structure of the films at T = 294 K can be visualized as an ensemble of superparamagnetic, weakly interacting nanoparticles and is characterized by small values of the coercive field H c and the remanent magnetization M rem. A decrease in the temperature leads to a strong increase in H c and M rem, which is associated with the transition of the islands to the blocked state. The blocking temperature of the structures is T b ~ 280 K. The magnetic anisotropy parameter K and the saturation magnetization M s of the islands depend on the growth temperature of cobalt T Co. An increase in the coverage density above the critical thickness d iff c at T = 294 K brings about a strong increase in H c and M rem and the appearance of a hysteresis loop anisotropy originating from the corrugated structure of the CaF2 buffer layer. The experimental results are compared with the model of an ensemble of noninteracting superparamagnetic particles.  相似文献   

13.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

14.
The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal system, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters of HoF3 crystals are as follows: a=0.6384±0.0009 nm, b=0.6844±0.0009 nm, and c=0.4356±0.0005 nm. It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the critical temperature Tc≈620 K. The activation enthalpy of electrical conduction is found to be ΔH1=0.744 eV at T<Tc and ΔH2=0.43 eV at T>Tc. The fluorine vacancies are the most probable charge carriers in HoF3 crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5×10?10, 5×10?6, and 2×10?3 S cm?1, respectively.  相似文献   

15.
The influence of small additions of 3d-metals (Cr, Fe, Co) on the superconducting transition temperature of lead has been studied. Both components are condensed simultaneously on a quartz substrate, held at 10 °K. With this “Quench evaporation technique” we get a statistical distribution of the impurity atoms in the lead matrix. As in early experiments on In and Sn the superconducting transition temperature of Pb decreases linearly with increasing 3d-metal content. This is in agreement with the theoretical results ofAbrikosov-Gorkov andSkalski et al. For the first time an influence of 3d-metal oxides (Cr-, Mn- and Co-oxide) on the superconductivity of Pb has been found. The transition temperatureT c decreases linearly with increasing oxide content (c) as in the case of the pure metals. For Mn and Co the slopesdT c /dc are nearly equal for the pure metal and its oxide. In the case of Cr the influence of the oxide is about seven times greater than that of the pure metal. Furtheron it is shown by annealing experiments that the degree of precipitation has also an influence on the transition temperature in the system of lead with Fe, Co and CO2O3.  相似文献   

16.
We report on structural, magnetic, conductivity, and thermodynamic studies of FeSe0.5Te0.5 single crystals grown by self-flux and Bridgman methods. The lowest values of the susceptibility in thenormal state, the highest transition temperature T c of 14.4 K, and the largest heat-capacity anomaly at T c were obtained for pure (oxygen-free) samples. The criticalcurrent density j c of 8.6 × 104A/cm2 (at 2 K) achieved in pure samples is attributed to intrinsic inhomogeneity due to disorder at the anion sites. The samples containing an impurity phase of Fe3O4 show increased j c up to2.3 × 105A/cm2 due to additional pinning centers. The upper critical field\(H_{c2}\)of ~500 kOe is estimated from the resistivity studyin magnetic fields parallel to the c-axis using a criterion of a 50%drop of the normal state resistivity R n . The anisotropy ofthe upper critical fieldγ H c2 =H ab c2/H c2 c reaches a value ~6 at\(T\longrightarrow T_c\). Extremely low values of the residualSommerfeld coefficient \(\gamma_r\) of about 1 mJ/mol K2,compared to the normal state Sommerfeld coefficient γ n = 25mJ/mol K2 for pure samples indicate a high volume fraction of thesuperconducting phase (up to 97%). The electronic contribution to the specific heat in thesuperconducting state is well described within a single-band BCS model with a temperature dependent gapΔ(0 K) = 27(1) K. A broad cusp-like anomaly in the electronic specific heat observed at low temperatures in samples with suppressed bulk superconductivity is ascribed to a splitting of the ground state of the Fe2+ ions at the 2c sites. This contribution is fully suppressed in the ordered state in samples with bulk superconductivity.  相似文献   

17.
A molecular beam resonance apparatus with electric quadrupole lenses asA- andB-fields and with superimposed parallel electric and magnetic transition-fields was used. Molecules in different rotational statesJ, m J are separated by theA-field. Spectra of molecules in different vibrational states are resolved by their different Starkeffect energies. By this means the following electric and magnetic properties of the molecule could be measured in the rotational stateJ=1 and vibrational statesv=0 and 1: The magnetic and electric dipole moment of the molecule, the scalar and the tensor nuclear dipole — dipole interactiond s andd T, the nuclear spinrotational interactionc F andc Rb, the nuclear quadrupole interactioneqQ, the nuclear magnetic moment μRb, the anisotropy of the diamagnetic susceptibility ξ, the anisotropy of the diamagnetic shielding of the external field by the electrons at the position of the nuclei σ. Using these quantities it was possible to calculate the quadrupole moment and a weighted quadrupole moment of the electronic charge distribution. The results are: (J=1,v=0) μel=8,5464 (17) debμ J/J=?29,79(2)x10?6 μ B d s/h=0,36(23) kHzd T/h=0,69(22)kHzc F/h=10,42(70) kHzc Rb/h=0,479 (48) kHz.eqQ Rb/h=?70,3410(26) MHzμ(1?σS)Rb=1,3474(5) μk⊥-ξ )=12(6)×10?30 erg/Gauß2⊥-σ∥)Rb=?3,8(2,1)×10?4⊥-σ )F=?2,6(3)×10?4  相似文献   

18.
The recoilless nuclear resonance absorption of the 23.8 keV-γ-line of119Sn was measured in a transmission experiment. The measurements were performed with tin and tin-indium alloys, as a function of temperature above and below the transition points of superconductivity (2 ?K<T<6 ?K). The Lamb-Moessbauer-factors, the Debye-temperatures, and an upper limit of the quadrupol interaction were calculated from the data. Within the experimental accuracy there is no evidence for a difference of the quantities mentioned above in the normal and super-conducting state down toT=0.6T c . The data for the isomeric shift yield a constants-electron density within the nucleus in the two states within 2·10?4 down toT=0.8T c .  相似文献   

19.
A microscopic theory of superconductivity in the extended Hubbard model which takes into account the intersite Coulomb repulsion and electron-phonon interaction is developed in the limit of strong correlations. The Dyson equation for normal and pair Green functions expressed in terms of the Hubbard operators is derived. The self-energy is obtained in the noncrossing approximation. In the normal state, antiferromagnetic short-range correlations result in the electronic spectrum with a narrow bandwidth. We calculate superconducting T c by taking into account the pairing mediated by charge and spin fluctuations and phonons. We found the d-wave pairing with high-T c mediated by spin fluctuations induced by the strong kinematic interaction for the Hubbard operators. Contributions to the d-wave pairing coming from the intersite Coulomb repulsion and phonons turned out to be small.  相似文献   

20.
Bulk composites have been prepared based on one-dimensional fibers of natural chrisothil-asbestos with various internal diameters (d = 6–2.5 nm) filled with tin. The electrical and magnetic properties of quasi-one-dimensional Sn wires have been studied at low temperatures. The electrical properties have been measured at T = 300 K at a pressure P = 10 kbar. It has been found that the superconducting (SC) characteristics of the nanocomposites (critical temperature Tc and critical magnetic field Hc) increase as the Sn filament diameter decreases. The temperature spreading of the resistive SC transition also increases as the Sn filament diameter decreases, which is explained by the SC order parameter fluctuations. The size effects (the increase in critical temperature Tc and transition width ΔTc) in Sn nanofilaments are well described by the independent Aslamazov–Larkin and Langer–Ambegaokara fluctuation theories, which makes it possible to find the dependence of Tc of the diffuse SC transition on the nanowire diameter. Using the temperature and magnetic-field dependences of the magnetic moment M(T, H), it has been found that the superconductor–normal metal phase diagram of the Sn–asbestos nanocomposite has a wider region of the SC state in T and H as compared to the data for bulk Sn. The magnetic properties of chrisotil-asbestos fibers unfilled with Sn have been studied. It has been found that the Curie law is fulfilled and that the superparamagnetism is absent in such samples. The obtained results indicate the absence of magnetically ordered impurities (magnetite) in the chrisotil-asbestos matrix, which allowed one to not consider the problem of the interaction of the magnetic subsystem of the asbestos matrix and the superconducting subsystem of Sn nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号