首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room temperature (RT) quantum cascade lasers (QCL) are now available even in continuous wave (cw) mode, which is very promising for in situ gas detectors. Ambient air monitoring requires high sensitivity with robust and simple apparatus. For that purpose, a compact photoacoustic setup was combined with two cw QCLs to measure ambient methane and nitrous oxide in the 8 μm range. The first laser had already been used to calibrate the sensitivity of the photoacoustic cell and a detection limit of 3 ppb of CH4 with a 1s integration time per point was demonstrated. In situ monitoring with this laser was difficult because of liquid nitrogen cooling. The second laser is a new RT cw QCL with lower power, which enabled one to reach a detection limit of 34 ppb of methane in flow. The loss in sensitivity is mainly due to the weaker power as photoacoustic signal is proportional to light power. The calibration for methane detection leads to an estimated detection limit of 14 ppb for N2O flux measurements. Various ways of modulation have been tested. The possibility to monitor ambient air CH4 and N2O at ground level with this PA spectrometer was demonstrated in flux with these QCLs. PACS 07.88; 92.60.Sz  相似文献   

2.
由于工业监控和环境检测的需要,甲烷气体检测日益得到人们的关注。研究了基于中红外分布反馈量子级联激光器(DFB-QCL)的光声光谱技术,并应用于痕量甲烷的检测。自主研发的DFB-QCL室温工作时的激射波长在7.6μm附近,覆盖了甲烷的特征吸收谱线1 316.83cm-1。待测甲烷气体充入亥姆霍兹光声谐振腔中,DFB-QCL的工作频率为234Hz、室温脉冲工作时峰值功率为80mW。中红外光经过甲烷吸收后,产生的声波信号经麦克风检测,由锁相放大器对信号进行采集并输入计算机进行处理。按信噪比为1计算,得到甲烷的探测极限为189nmol.mol-1。  相似文献   

3.
利用甲烷(CH4)气体分子在1.6 μm的吸收特性,使用中心波数为6 046.96 cm-1的蝶形分布反馈式(DFB)激光器和自制的大内径光声池,设计了一款紧凑高灵敏的CH4气体传感器。为了进一步增强输出光声信号强度,一个具有高反射率的平面镜放置在光声池后,使透射光束被反射后,二次通过光声池,增强了光与被测气体的作用距离,使光声信号提高了1.9倍。传感器各项参数,包括调制频率、调制深度及气体流速被优化。在标准大气压和1 s的积分时间下,该传感器最终获得的探测灵敏度为0.21 ppm,1σ归一化等效噪声系数(NNEA)为2.1×10-8 cm-1·W·Hz-1/2。该甲烷传感器使用性价比高的DFB近红外激光二极管作为激发光源,装置简单,成本低廉可以满足大气环境检测、矿井瓦斯监测、工业过程控制及无创伤医疗诊断等领域的需求。  相似文献   

4.
周彧  曹渊  朱公栋  刘锟  谈图  王利军  高晓明 《物理学报》2018,67(8):84201-084201
近年来,气候变化对地球的生态环境产生严重影响,而大气温室气体在气候变化中具有重要的作用.一氧化二氮(N_2O)作为一种重要的温室气体,其浓度变化对大气环境产生重要影响,因此对其浓度的探测在大气环境研究中具有重要意义.本文开展了基于中国自主研发的7.6μm中红外量子级联激光的共振型光声光谱探测N_2O的研究,建立了N_2O光声光谱传感实验系统.此系统在传统的光声光谱探测的基础上优化改进,采用双光束增强的方式,增加了有效光功率,进一步提高了系统的探测灵敏度.探测系统以1307.66 cm~(-1)处的N_2O吸收谱线作为探测对象,结合波长调制技术对N_2O气体进行探测研究.通过对一定浓度的N_2O气体在不同调制频率和调制振幅的光声信号的探测,确定了系统的最佳调制频率和调制振幅分别为800 Hz和90 mV.在最优实验条件下对不同浓度的N_2O气体进行了测量,获得了系统的信号浓度定标曲线.实验表明,在锁相积分时间为30 ms时,系统的浓度探测极限为150×10~(-9).通过100次平均后,系统噪声进一步降低,实现了大气N_2O的探测,浓度探测极限达到了37×10~(-9).  相似文献   

5.
Spectral investigation around 6115 cm-1 for simultaneous detection of ammonia, methane and ethylene in gas samples is presented. Experimental data on the ν234 combination band of ammonia are reported with a resolution of 1.5 GHz. A trace gas analyzer based on a resonant photoacoustic cell and an external cavity diode laser has been used for detection. A data fitting procedure has been developed in order to improve the system sensitivity and to limit the need of a reference cell. The selected spectral region allows a sensitivity of about 60 ppm for ammonia, 6 ppm for methane and 30 ppm for ethylene with 0.3 mW laser power. An application of simultaneous detection of such molecules in a mixture reproducing their typical abundances in real gas samples from biomass gasification is discussed. PACS 42.62.Fi; 42.55.Px; 82.80.Ch  相似文献   

6.
Fischer C  Sigrist MW  Yu Q  Seiter M 《Optics letters》2001,26(20):1609-1611
We present a compact mid-infrared laser spectrometer for trace-gas monitoring. Difference frequency generation in periodically poled LiNbO(3) is used as laser source, yielding a tuning range 3.2-3.7mum at a linewidth of 154 MHz. The relatively high average power of 3 to 5 mW favors detection with a small resonant photoacoustic gas cell. Measurements of methane yield a detection limit in the low parts in 10(6) by volume concentration range.  相似文献   

7.
乙炔气体作为判断变压器运行状态的一种故障气体,其浓度的高低反映了变压器的运行状况,因此对其浓度的探测在变压器的维护中具有重要意义。为了准确探测变压器运行过程中产生的乙炔气体浓度,为变压器的维护提供技术参数,针对基于DFB激光器的共振型光声光谱技术痕量乙炔气体检测技术开展研究,对传统的光声光谱探测系统进行改进。根据光声光谱技术的理论可知,光声信号的强度与入射激光的功率成正比,所以在光声池的出射窗口采用一个平面反射镜将红外光再次反射到光声池中以增加入射光功率,增强光声信号强度,进一步提高了光声系统的探测灵敏度。通过一定浓度的乙炔气体在不同调制频率和不同调制深度下光声信号强度的变化,确定光声探测系统的最佳调制频率和最佳调制深度为767 Hz和0.3 mV。利用不同浓度乙炔气体对系统进行标定,然后采用最小二乘法对光声信号与气体浓度进行拟合,二者具有很好的线性度。通过Allan方差计算可知,系统在平均时间达到200 s时,能够达到最低探测极限浓度。实验表明,在一个大气压下,积分时间为10 ms时,改进后的共振型光声光谱探测系统对乙炔气体的最低探测极限浓度达到了0.3 μL·L-1。还将小波去噪技术引入到低浓度下乙炔气体的光声信号处理中,有效消除了低浓度气体光声信号中的噪声,提高了信噪比。设计的共振型光声光谱探测系统操作简单,最低探测浓度符合国标中对变压器维护过程中对乙炔气体的探测需求,在变压器维护领域具有广阔的应用前景。  相似文献   

8.
二氧化碳(CO2)是植物光合作用的原材料,也是一种温室气体,其过量地排放会影响动植物的生态环境。在碳达峰、碳中和的背景下,研制高灵敏度的CO2检测装置具有重要意义。为了监测大气环境中CO2含量的变化,设计了一种长光程共振式CO2气体光声传感器,并以此搭建了光声检测装置。以中心波长为2 004 nm的分布式反馈激光器(DFB)作为激发光源,激光射入由漫反射材料制成的球型吸收腔,在腔内多次反射以增加气体的吸收路径。吸收腔外部被两个高热传导率的铝制半球包裹,降低由池体吸收光能后产生的热噪声。吸收腔上耦合一根声学管,当其工作在一阶纵向共振模态时,光声信号被放大,在管子末端达到极大值。为了进一步增大光声信号,通过饱和加湿样品的方式来加快CO2气体的弛豫速率,加湿后的样品产生的光声信号是干燥样品的2.1倍左右。使用一系列浓度的湿润CO2样品标定光声检测装置,结果表明,光声信号与浓度之间呈现良好的线性关系。在此基础上,通过对标准气体的检测实验,验证了装置的准确性与稳定性...  相似文献   

9.
In this work, CO2 laser photoacoustic spectroscopy was used to detect and monitor ethylene concentrations from about 0.6 ppmV up to 47 ppmV emitted by urban public transports in Campos dos Goytacazes city in Rio de Janeiro state, Brazil. The photoacoustic method proved to be a very sensitive and selective gas detection technique. As ethylene is a rather reactive compound due to its double bond between the two carbon atoms, it acts as one of the precursors for the tropospheric ozone generation, a gas species that is present in the photochemical smog, is an important greenhouse gas and whose formation is strongly associated with the presence of sun light and nitrogen oxide compounds. For this reason, ethylene renders itself an important pollutant in the atmosphere. In addition, the valid Brazilian legislation is only concerned with the total emission of hydrocarbons from the vehicle exhausts. It means that it does not discriminate the emission of some pollutant gas compounds, such as ethylene. This situation is greatly aggravated by the fact that most of the mass and cargo transport in Brazil is made by roads and powered by diesel oil.  相似文献   

10.
工作环境是光声光谱气体检测系统在工业现场应用的重要影响因素.实验发现,待测气体湿度对电容式微音器灵敏度影响显著,导致现有光声光谱气体榆测系统测试结果漂移.文章提出一种气体湿度影响消除方法,在光声腔中安装扬声器,以扬声器信号幅值作为声感应器件灵敏度的自适应表征,对光声信号幅值作自行修正,有效克服电容式微音器声信号榆测中灵...  相似文献   

11.
A compact multi-component trace-gas detector based on the resonant photoacoustic technique and a NIR external cavity diode laser has been developed. It has been characterized using a mixture of ethylene and methane diluted in ambient air. A spectroscopic investigation of combination bands and overtones between 5900 and 6250 cm-1, obtained with an IR pulsed laser photoacoustic spectrometer, allowed us to find a wavelength region where the 2ν3 overtone of CH4 and the ν59 combination band of C2H4 show uncongested rotational lines. Using a single-mode scan of the diode laser in this region, around 6150 cm-1, the sensitivity for the simultaneous detection of ethylene and methane is 8 ppm/mW and 40 ppm/mW respectively. Factors affecting the sensitivity and selectivity of the detection system and possible improvements suitable to reach the sub-ppm detection limit are discussed. Received: 1 August 2001 / Revised version: 28 November 2001 / Published online: 7 February 2002 An erratum to this article is available at .  相似文献   

12.
A compact, diode-based difference-frequency laser system combined with a photoacoustic detection scheme is presented for trace-gas sensing. It features a broad, continuous tuning range (3.2–3.7 μm), a narrow line width (154 MHz), and room-temperature operation, and thus allows numerous gas species to be measured both isolated and in mixtures of different gases. Several trace-gas species of environmental interest were detected, and gas mixtures were analysed. The detection limits are in the low-ppmV range, e.g. 1.3 ppmV for methane, 1.8 ppmV for ethane, and 1.2 ppmV for hydrogen chloride. Received: 10 April 2002 / Revised version: 5 June 2002 / Published online: 12 September 2002 RID="*" ID="*"Corresponding author. Fax: +41-1/633-1077, E-mail: Sigrist@iqe.phys.ethz.ch  相似文献   

13.
A methane sensor based on quartz-enhanced photoacoustic spectroscopy was developed. An antimonide quantum-well diode laser was used as an excitation source. The GaInAsSb/AlGaAsSb laser was fabricated by molecular beam epitaxy on GaSb substrate. This diode laser emits in the 2.35 μm range at room temperature in the continuous wave regime. A spectrophone constituted of a quartz tuning fork and two steel microresonators was used. The analysis of the sensor response with one, two or without microresonators is presented. Second derivative wavelength modulation detection was used to perform low concentrations measurements, thus we obtained a CH4 detection limit of 1 ppmv.  相似文献   

14.
15.
In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.  相似文献   

16.
甲烷是一种无色、无味、易燃、易爆的气体,不仅造成煤矿作业的重大安全隐患,而且又是温室效应的重要气体之一,对于甲烷气体的监测具有极其重要的意义。采用混合可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)的检测技术,利用甲烷的2v3(第二泛频带)带R(3)支带吸收谱线,设计并研制出痕量甲烷气体检测仪。通过调谐系数-0.591 cm-1·K-1,采用改变DFB激光器工作温度的方式来获得甲烷在1.654 μm处的最佳吸收谱线。待DFB激光器激射中心谱线选择后,通过调节其注入电流幅值来获得合适的发光强度。同时,结合频率调制技术将待测信号频率移至高频区,减小1/f噪声。在光学结构方面,采用有效光程为76 m的herriott气室,确保对痕量甲烷气体进行检测。利用该痕量甲烷气体检测仪,在被测气体浓度为50~5 000 μmol·mol-1的范围内,对二次谐波信号进行了提取,并利用最小均方误差准则分别对气体浓度、信噪比的关系、谐波峰值信号与气体浓度的关系进行了线性拟合,最低检测限达到了1.4 μmol·mol-1。实验表明,谐波波形对称性良好,未观察到强度调制现象,消除强度调制等因素对谐波检测的影响。  相似文献   

17.
A photoacoustic sensor has been developed for trace-gas monitoring using a near-infrared semiconductor laser emitting in the 2ν3 band of methane at 1.65 μm. The apparatus was designed for on-line process control in the manufacturing of the novel low-water-peak fibres developed for optical telecommunications. The importance of collisional relaxation processes in the generation of the photoacoustic signal is reported in the particular case of CH4 detection in dry O2 and O2–N2 mixtures. The negative influence of these effects results in a strongly reduced and phase-shifted photoacoustic signal, induced by a fast resonant coupling between the vibrational states of methane and oxygen, associated with the slow relaxation of the excited oxygen molecules. An unusual parabolic response of the sensor with respect to the methane concentration has been observed and is discussed. Finally, the beneficial effect of several species, including water vapour and helium, acting as a catalyst to hasten the relaxation of the CH4–O2 system, is demonstrated. PACS 42.62.Fi; 33.20.Ea; 34.50.Ez  相似文献   

18.
We demonstrate a standoff system based on quartz-enhanced photoacoustic spectroscopy technique for the concentration measurements of atmospheric ozone and methane. The technique is a modified version of Photoacoustic spectroscopy. Two primary features of this technique are the employment of a tunable quantum cascade laser and a resonant quartz-crystal tuning fork detector. Both of these features facilitate simultaneous sensing of multiple molecular species. External-cavity quantum cascade laser having a spectral range from 7 to 10 micron is used. Diurnal concentration variations of methane and ozone are estimated for open-path up to 25 m. The ambient methane and ozone concentration maxima were observed to have values of 3.5 parts per million by volume and 140 parts per billion by volume, respectively. Finite-element mesh-based software is used to simulate the Eigen frequency of the tuning fork sensor. High-resolution transmission molecular spectroscopic database of atmospheric gases and the real-time gas concentration data from the Delhi Pollution Control Committee have been used as references.  相似文献   

19.
Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm−1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed.  相似文献   

20.
A photoacoustic trace-gas sensor for the measurement of nitric oxide with a detection limit of 500 parts in 10(9) has been demonstrated. The radiation source was a thermoelectrically cooled distributed-feedback quantum-cascade laser operating in pulsed mode near 5.3 microm with an average laser power of 8 mW. A resonant photoacoustic cell was excited in its first longitudinal mode by the modulated laser light. Preliminary measurements have been performed to test the performance of our photoacoustic sensor; possible improvements to reach lower detection limits are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号