首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用多光子非线性康普顿散射模型、3维粒子模拟模型和数值计算方法,研究了超强激光与等离子体作用中自生磁场产生和电子热传导过程,提出了将非线性康普顿散射光作为改变等离子体自生磁场和电子热传导的新机制,给出了自生磁场最大饱和值和超热电子热传导的修正方程和数值计算结果。研究发现在时间为100~160范围内,自生磁场能量随入射激光功率密度增大而迅速增大,之后处于较高饱和阶段。增大的初始时刻较散射前提前了20,增大阶段的时间延长了30,饱和阶段增幅为40。入射激光功率密度为1019~1020W/cm2时,自生磁场强度最大模拟值为1.47104~3.75104T,单电子能谱峰值出现在3.3MeV和6.6MeV附近,能谱曲线在4~15 MeV和11~14.3MeV范围迅速衰减,在6.7MeV和13.2MeV以上时,超热电子有效温度为2.6MeV和4.5MeV,比无散射的理论值和拟合值均有一定增大。随入射激光强度增大,热流随激光脉冲一起向等离子体内流动的时间缩短,自生磁场限制热流的时间延长。并对所得结果给出了初步物理解释。  相似文献   

2.
应用多光子非线性康普顿散射模型、3维粒子模拟模型和数值计算方法,研究了超强激光与等离子体作用中自生磁场产生和电子热传导过程,提出了将非线性康普顿散射光作为改变等离子体自生磁场和电子热传导的新机制,给出了自生磁场最大饱和值和超热电子热传导的修正方程和数值计算结果。研究发现在时间为100~160范围内,自生磁场能量随入射激光功率密度增大而迅速增大,之后处于较高饱和阶段。增大的初始时刻较散射前提前了20,增大阶段的时间延长了30,饱和阶段增幅为40。入射激光功率密度为1019~1020W/cm2时,自生磁场强度最大模拟值为1.47104~3.75104T,单电子能谱峰值出现在3.3MeV和6.6MeV附近,能谱曲线在4~15 MeV和11~14.3MeV范围迅速衰减,在6.7MeV和13.2MeV以上时,超热电子有效温度为2.6MeV和4.5MeV,比无散射的理论值和拟合值均有一定增大。随入射激光强度增大,热流随激光脉冲一起向等离子体内流动的时间缩短,自生磁场限制热流的时间延长。并对所得结果给出了初步物理解释。  相似文献   

3.
应用多光子非线性Compton散射模型和数值计算方法,研究了Compton散射对超强激光与等离子体作用中能量输运的影响,提出了将Compton散射光和入射超强光作为电子能量输运的新机制,给出了电子热传导新模型和能量输运数值计算结果。结果表明:散射使等离子体中Weibel不稳定性和自生磁场增强效应导致耦合光传输方向的电子密度显著减小,更多激光能量以热流形式分布在横向方向。散射使电子吸收能量的时间缩短和自生磁场线性阶段最大增长率增大效应导致等离子体表面处沿耦合激光横向方向的热流几乎被完全限制,电子在激光传输方向的能量显著增加。  相似文献   

4.
用3维粒子模拟程序研究了相对论强激光和高密度等离子体相互作用引起的电磁不稳定。数值模拟表明,在线偏振强激光作用下,等离子体表面出现了电磁不稳定性。形成的不稳定结构随时间发展和激光功率密度的增加进一步深入到等离子体内部,最终使等离子体表面处激发饱和自生磁场。这种由电子速度各向异性而产生的自生磁场对激光有质动力推开电子时所形成的电子热流产生抑制作用,并将直接影响电子加速效率。  相似文献   

5.
利用二维相对论电磁粒子模拟程序研究了激光等离子体中电子热流在各向异性等离子体中的发展演化过程,提出了单位时间内等离子体临界表面上输运的能量与电子自由路程之间的函数关系,得到了用经典Spitzer-Harm理论来描述的电子热传导公式,探讨了经典电子热传导模型与被限制的自由热流随时间的变化情形。数值结果表明,强激光照射等离子体薄靶时的初始时刻电子热流迅速增大,但由于周边的自生磁场对电子的运动有限制作用,因此热流随时间缓慢地减少。对这些过程的研究对于电子热流的衰减和热输运等过程有重要意义。  相似文献   

6.
应用多光子非线性Compton散射模型,研究了多光子非线性Compton散射对激光等离子体中电子运动的影响,提出了将入射激光和Compton散射光形成的耦合光、耦合光与等离子体产生的自生磁场形成的混合场作为加速电子的新机制,对电子动量和能量方程进行了修正和数值模拟。结果表明,当混合场的电场振幅与磁场振幅相等时,回旋共振电子在与混合场作用时间内能被加速到很高的能量;电子加速能量随耦合光幅值的增大而增大,随电子耦合初始角度的增大而周期变小,随电子横向耦合归一化初始速度的增大,开始时较快增加,之后缓慢增加,最后趋于稳定。  相似文献   

7.
采用相对论电磁粒子模拟程序研究了飞秒激光等离子体相互作用中产生的电流密度、电场和自生磁场的发展演化过程。介绍了电子的非局域热输运的基本特性以及激光加热过程中温度烧蚀前沿稠密等离子体子区的预热效应、临界面附近的限流效应,以及冕区的反扩散与限流效应,得到了经典Spitzer-Harm理论描述的电子热传导随自生磁场的演化情形。数值模拟表明:在线性强激光作用下,由于电子初始时刻的无规则热运动,在等离子体上激发电磁不稳定性,而不稳定性激发的强电磁场使电子束在非常短的距离内沉积能量,同时对在激光有质动力推开电子时形成的超热电子能量输运产生抑制作用。  相似文献   

8.
采用电子谱仪测量了飞秒激光-金属薄膜靶相互作用中靶前和靶后产生的超热电子能谱.结果显示:靶前超热电子能谱的峰出现在约430 keV处,靶后超热电子能谱的峰出现在约175 keV处;靶前超热电子的有效温度分别为218 keV和425 keV,靶后超热电子能谱出现“软化”现象,其有效温度分别为96 keV和347 keV.靶前和靶后超热电子能谱明显不同是由于超热电子输运穿越过密等离子体和冷材料的靶,并在靶后建立Debye鞘,鞘电场使靶后超热电子能谱峰向低能端移动,鞘电场和自生磁场导致靶后超热电子能谱产生“软化”,估算出的鞘电场小于激光电场.  相似文献   

9.
实验研究了超短超强激光脉冲与薄膜靶相互作用中产生的超热电子角分布随激光入射角的变化.在靶面方向观测到一束方向性很好的高能超热电子.该高能超热电子束的电子数目随着激光入射角的增大而增大.对结果的分析表明,表面准静态磁场是导致表面电子产生的主要原因. 关键词: 超热电子 表面准静态磁场 超强激光脉冲与等离子体相互作用  相似文献   

10.
应用多光子非线性Compton散射模型、空间动态补偿模型、非线性薛定谔方程和数值模拟方法,研究了Compton散射对超强飞秒激光等离子体中通道的影响,提出了将Compton散射光作为形成等离子体通道的新机制,给出了超强飞秒激光脉冲在等离子体中传播和电子密度随时间变化的非线性修正方程,并进行了数值模拟.研究发现:散射使等离子体中电子密度峰值增大1个量级,半径增大1 mm.激光最大功率密度被限制在10~(18)W/m~2以下,随传输距离增大缓慢衰减.传输初始阶段,单脉冲衰减能量较散射前增大2%,之后衰减较平缓.通过增加超强飞秒激光脉冲输入功率,能有效地增加电子密度峰值,有利于等离子体通道的形成.并对所的结论给出了初步物理解释.  相似文献   

11.
本文研究了激光等离子体中与光电效应相联系的自生磁场,在s偏振光斜入射到静止等温等离子体的情况下,得到了时间上和空间上调制的自生磁场的解析解.  相似文献   

12.
采用数值方法研究了超强激光与等离子体相互作用中产生的电磁不稳定性及其产生机制。用Spitzer-Harm理论分析了电子热传导中能量的运输情况,观察到由激光的非等方加热引起的电子纵向加热现象。结果表明,不稳定性激发的强电磁场使电子束在非常短的距离内沉积能量,同时对在激光有质动力推开电子时形成的电子热流产生抑制作用。同时发现,随着自生磁场的增长,电子被磁场波捕捉,热运输受抑制。  相似文献   

13.
在激光等离子体相互作用过程中,受激拉曼散射(SRS)会通过Langmuir波衰减不稳定性(LDI)和电子俘获两种机理饱和.文章给出均匀一维等离子体和低强度非相对论激光作用中,LDI和电子俘获两种机理下的SRS饱和时间的解析表达式.SRS饱和时间与入射激光强度,电子密度,电子温度,初始电子密度微扰等参数有关.解析理论计算得到了与模拟和实验相符的结果. 关键词: 受激拉曼散射 饱和 Langmuir波衰变不稳定性(LDI) 电子俘获  相似文献   

14.
激光等离子体相互作用中Weibel不稳定性   总被引:1,自引:1,他引:0       下载免费PDF全文
利用粒子模拟法对超强激光与等离子体相互作用中产生的Weibel不稳定性及其产生机制进行了详细的研究。给出不稳定性的线性色散关系和饱和磁场与各向异性参数之间的函数关系,发现Weibel不稳定性的存在使超强激光在等离子体中激发的自生磁场饱和,饱和自生磁场的存在使粒子速度分布在激光传播方向上表现出各向异性。讨论了Weibel不稳定性的线性和非线性饱和过程,对更好地理解快点火物理中自生磁场的产生、快电子输运等过程有重要意义。  相似文献   

15.
对超短超强脉冲激光与固体薄膜靶相互作用产生的超热电子的空间分布和能谱特性进行了研究. 结果表明,超热电子的角分布和能谱均表现出各向异性. 分析认为这主要与超热电子产生的机制有关. 能谱的各向异性解释了目前各研究小组在相同的激光功率密度下,得到的超热电子温度却有很大差别的现象. 关键词: 飞秒激光 等离子体 能谱 角分布 各向异性  相似文献   

16.
《光学技术》2015,(4):327-330
应用Compton散射模型、平均原子模型和碰撞-辐射模型,研究了超强激光等离子体推进机制,提出了将入射光和Compton散射光作为超强激光等离子体推进新机制,给出了束缚电子占据概率和流体力学修正方程,得到了O、Ne、N、Xe的等离子体烧蚀压、等效烧蚀深度和烧蚀速度随入射激光功率密度变化的模拟结果。结果表明:与散射前相比,随着激光功率密度增大,Xe烧蚀压最大,其次是Ne、O、N;O等效烧蚀深度最大,其次是N、Xe、Ne;Ne弛豫时间最长,其次是O、N、Xe;Xe烧蚀速度最快,其次是Ne、O、N。采用含电子多的轻元素超强激光等离子体,有利于等离子体整体推进。  相似文献   

17.
应用多光子非线性Compton散射模型和电流密度拉普拉斯变换改进的时域有限差分法,研究了超强激光照射三维时变等离子体的散射特性,提出了Compton散射光是影响等离子体散射的新机制,给出了该等离子体散射截面和频率随时间变化的修正方程,并进行了数值仿真。结果表明:与Compton散射前相比,Compton散射使等离子体散射截面增大,且随频率增大迅速衰减。这是因散射使等离子体中电子从耦合激光场中获得更多能量,从而导致电子被耦合场俘获的缘故;使瞬变等离子体最大频率随时间呈准直线缓慢下降趋势。这是因散射使等离子体中电子辐射阻尼效应增强,从而导致电子能量衰减、频率下降的缘故;使缓变等离子体频率随时间缓慢增大。这是因散射使等离子体中电子辐射阻尼增大效应减弱了频率增大的缘故。  相似文献   

18.
应用多光子非线性Compton散射模型和电流密度拉普拉斯变换改进的时域有限差分法,研究了超强激光照射三维时变等离子体的散射特性,提出了Compton散射光是影响等离子体散射的新机制,给出了该等离子体散射截面和频率随时间变化的修正方程,并进行了数值仿真。结果表明:与Compton散射前相比,Compton散射使等离子体散射截面增大,且随频率增大迅速衰减。这是因散射使等离子体中电子从耦合激光场中获得更多能量,从而导致电子被耦合场俘获的缘故;使瞬变等离子体最大频率随时间呈准直线缓慢下降趋势。这是因散射使等离子体中电子辐射阻尼效应增强,从而导致电子能量衰减、频率下降的缘故;使缓变等离子体频率随时间缓慢增大。这是因散射使等离子体中电子辐射阻尼增大效应减弱了频率增大的缘故。  相似文献   

19.
1.053μm激光在腔靶中产生的非线性过程   总被引:1,自引:0,他引:1  
波长1.053μm、脉宽约1ns、能量300~600J激光在亚毫米的腔靶中可以产生十分丰富的非线性过程。我们直接测量了受激Brillouin散射、受激Raman散射:通过谐波间接测量了共振吸收、离子声衰变和双等离子体衰变。其中受激Brillouin散射和受激Raman散射是腔靶中的主要非线性过程,它散射掉约40%的入射光能量。激光激发的电子等离子体波是产生超热电子的根源,产生电子等离子体波的非线性过程是受激Raman散射、双等离子体衰变、共振吸收和离子声衰变。其中受激Raman散射是激发电子等离子体波的主要过程,它产生约占入射激光能量10%的超热电子。各非线性过程发射的光谱与激光参数和等离子体状态有密切关系,仔细测量和研究这些谱的特性可以获得等离子体温度、密度的信息。  相似文献   

20.
应用多光子非线性Compton散射模型、空间动态补偿模型、非线性薛定谔方程和数值模拟方法,研究了Compton散射对超强飞秒激光等离子体中通道的影响,提出了将Compton散射光作为形成等离子体通道的新机制,给出了超强飞秒激光脉冲在等离子体中传播和电子密度随时间变化的非线性修正方程,并进行了数值模拟。并研究发现:散射使等离子体中电子密度峰值增大1个量级,半径增大1mm。激光最大功率密度被限制在1018W/m2以下,随传输距离增大缓慢衰减。传输初始阶段,单脉冲衰减能量较散射前增大2%,之后衰减较平缓。通过增加超强飞秒激光脉冲输入功率,能有效地增加电子密度峰值,有利于等离子体通道的形成。并对所的结论给出了初步物理解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号