首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 902 毫秒
1.
By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.  相似文献   

2.
In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions.  相似文献   

3.
In this paper, we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear SchrSdinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions, one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results, some previous one- and two- soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one- and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.  相似文献   

4.
With the help of symbolic computation, the tanh method is extended to find some new exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. As a result, the bright and dark soliton solutions are obtained. In addition, some new soliton solutions in this model are found.  相似文献   

5.
王欢  李彪 《中国物理 B》2011,20(4):40203-040203
In this paper,we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear Schrdinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions,one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results,some previous one-and two-soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one-and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.  相似文献   

6.
In this paper, based on N-soliton solutions, we introduce a new constraint among parameters to find the resonance Y-type soliton solutions in (2+1)-dimensional integrable systems. Then, we take the (2+1)-dimensional Sawada–Kotera equation as an example to illustrate how to generate these resonance Y-type soliton solutions with this new constraint. Next, by the long wave limit method, velocity resonance and module resonance, we can obtain some new types of hybrid solutions of resonance Y-type solitons with line waves, breather waves, high-order lump waves respectively. Finally, we also study the dynamics of these interaction solutions and indicate mathematically that these interactions are elastic.  相似文献   

7.
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.  相似文献   

8.
《中国物理 B》2021,30(6):60202-060202
The nonlinear Schro¨dinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schro¨dinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schro¨dinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.  相似文献   

9.
In this paper, we study soliton–cnoidal wave solutions for the reduced Maxwell–Bloch equations. The truncated Painlev′e analysis is utilized to generate a consistent Riccati expansion, which leads to solving the reduced Maxwell–Bloch equations with solitary wave, cnoidal periodic wave, and soliton–cnoidal interactional wave solutions in an explicit form.Particularly, the soliton–cnoidal interactional wave solution is obtained for the first time for the reduced Maxwell–Bloch equations. Finally, we present some figures to show properties of the explicit soliton–cnoidal interactional wave solutions as well as some new dynamical phenomena.  相似文献   

10.
Filiz T  scan  Ahmet Bekir 《中国物理 B》2010,19(8):80201-080201
<正>In this paper,we establish travelling wave solutions for some nonlinear evolution equations.The first integral method is used to construct the travelling wave solutions of the modified Benjamin-Bona-Mahony and the coupled Klein-Gordon equations.The obtained results include periodic and solitary wave solutions.The first integral method presents a wider applicability to handling nonlinear wave equations.  相似文献   

11.
An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.  相似文献   

12.
非线性波方程尖峰孤子解的一种简便求法及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
刘煜 《物理学报》2009,58(11):7452-7457
根据尖峰孤子解的特点,提出了一种待定系数法求非线性波方程尖峰孤子解的思路和方法,并利用该方法求解了5个非线性波方程,即CH(Camassa-Holm)方程、五阶KdV-like 方程、广义Ostrovsky方程、组合KdV-mKdV方程和Klein-Gordon方程,比较简便地得到了这些方程的尖峰孤子解.文献中关于CH方程的结果成为本文结果的特例.通过数值模拟给出了部分解的图像.简要说明了非线性波方程存在尖峰孤子解所须满足的特定条件.该方法也适用于求其他非线性波方程的尖峰孤子解. 关键词: 非线性波方程 尖峰孤子解 待定系数法  相似文献   

13.
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sample, the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.  相似文献   

14.
Making use of a new and more general ansatz, we present the generalized algebraic method to uniformlyconstruct a series of new and general travelling wave solution for nonlinear partial differential equations. As an applicationof the method, we choose a (1 1)-dimensional dispersive long wave equation to illustrate the method. As a result, wecan successfully obtain the solutions found by the method proposed by Fan [E. Fan, Comput. Phys. Commun. 153 (2003)17] and find other new and more general solutions at the same time, which include polynomial solutions, exponentialsolutions, rational solutions, triangular periodic wave solutions, hyperbolic and soliton solutions, Jacobi and Weierstrassdoubly periodic wave solutions.  相似文献   

15.
The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.  相似文献   

16.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

17.
Hirota method is used to directly construct quasi-periodic wave solutions for the nonisospectral soliton equation.One and two quasi-periodic wave solutions for the variable-coefficient KdV equation are studied.The well known one-soliton solution can be reduced from the one quasi-periodic wave solution.  相似文献   

18.
Based on the invariant expansion method,some reasonable approximate solutions of coupled Korteweg-de Vries(KdV)equations with diferent linear dispersion relations have been obtained.These solutions contain not only bell type soliton solutions but also periodic wave solutions that expressed by Jacobi elliptic functions.The results also show that if the arbitrary constants are selected suitably,the approximate solutions may become the exact ones.  相似文献   

19.
A new generalized transformation method is presented to find more exact solutions of nonlinear partial differential equation. As an application of the method, we choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号