首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Carbon isotopes of breath CO2 vary depending on diet and fuel substrate used. This study examined if exercise-induced δ13C-CO2 changes in substrate utilization were distinguishable from baseline δ13C-CO2 variations in a population with uncontrolled diet, and compared hair isotope values and food logs to develop an isotope model of diet. Study participants included nine women with diverse Body Mass Index (BMI), age, ancestry, exercise history, and diet. Breath samples were collected prior to and up to 12?h after a 5- or 10?K walk/run. Indirect calorimetry was measured with a smartphone-enabled mobile colorimetric device, and a field-deployable isotope analyzer measured breath δ13C-CO2 values. Diet was assessed by food logs and δ13C, δ15N of hair samples. Post-exercise δ13C-CO2 values increased by 0.54?±?1.09‰ (1 sd, n?=?9), implying enhanced carbohydrate burning, while early morning δ13C-CO2 values were lower than daily averages (p?=?0.0043), indicating lipid burning during overnight fasting. Although diurnal δ13C-CO2 variation (1.90?±?0.77‰) and participant baseline range (3.06‰) exceeded exercise-induced variation, temporal patterns distinguished exercise from dietary isotope effects. Hair δ13C and δ15N values were consistent with a new dietary isotope model. Notwithstanding the small number of participants, this study introduces a novel combination of techniques to directly monitor energy balance in free-living individuals.  相似文献   

2.
When a diet switch results in a change in dietary isotopic values, isotope ratios of the consumer's tissues will change until a new equilibrium is reached. This change is generally best described by an exponential decay curve. Indeed, after a diet switch in captive red knot shorebirds (Calidris canutus islandica), the depletion of 13C in both blood cells and plasma followed an exponential decay curve. Surprisingly, the diet switch with a dietary 15N/14N ratio (δ15N) change from 11.4 to 8.8 ‰ had little effect on δ15N in the same tissues. The diet-plasma and diet-cellular discrimination factors of 15N with the initial diet were very low (0.5 and 0.2 ‰, respectively). δ15N in blood cells and plasma decreased linearly with increasing body mass, explaining about 40 % of the variation in δ15N. δ15N in plasma also decreased with increasing body-mass change (r 2=.07). This suggests that the unusual variation in δ15N with time after the diet switch was due to interferences with simultaneous changes in body-protein turnover.  相似文献   

3.
High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ13C and δ15N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ13C values in aboveground (?30.8 to ?23.6?‰, average: ?26.6?±?0.4?‰) and belowground biomass (?30.0 to ?23.1?‰, average: ?26.3?±?0.4?‰) were similar. The δ13C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ15N values of aboveground (6.7–16.1?‰, average: 9.6?±?0.4?‰) were comparatively higher than belowground biomass (5.4–13.2?‰, average: 7.8?±?0.3?‰). The δ15N values were negatively correlated with soil available P. We conclude that the variation in δ13C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ13C as an indicator of stress in plants.  相似文献   

4.
Diet–tissue isotopic relationships established under controlled conditions are informative for determining the dietary sources and geographic provenance of organisms. We analysed δ13C, δ15N, and non-exchangeable δ2H values of captive African grey parrot Psittacus erithacus feathers grown on a fixed mixed-diet and borehole water. Diet–feather Δ13C and Δ15N discrimination values were +3.8?±?0.3?‰ and +6.3?±?0.7?‰ respectively; significantly greater than expected. Non-exchangeable δ2H feather values (?62.4?±?6.4?‰) were more negative than water (?26.1?±?2.5?‰) offered during feather growth. There was no positive relationship between the δ13C and δ15N values of the samples along each feather with the associated samples of food offered, or the feather non-exchangeable hydrogen isotope values with δ2H values of water, emphasising the complex processes involved in carbohydrate, protein, and income water routing to feather growth. Understanding the isotopic relationship between diet and feathers may provide greater clarity in the use of stable isotopes in feathers as a tool in determining origins of captive and wild-caught African grey parrots, a species that is widespread in aviculture and faces significant threats to wild populations. We suggest that these isotopic results, determined even in controlled laboratory conditions, be used with caution.  相似文献   

5.
Abstract

Natural nitrogen isotope ratios were measured in different compartments (needles or leaves and twigs of different age classes and crown positions, roots and soil of different horizons) of spruce (Picea abies), larch (Larix decidua) and beech (Fagus sylvatica) trees in an 11-year-old mixed stand in the Fichtelgebirge, NE Bavaria, Germany. In addition, samples of understorey vegetation (mainly ericaceous shrubs and grass) and of ectomycorrhizal and saprophytic fungi were analyzed. The δ15N values found for all samples ranged between ?7.5 and + 4.5‰. No significant differences were found for the nitrogen isotope ratios of the three tree species despite of their evergreen versus deciduous foliage and despite of their different rooting depth. Ericaceous shrubs had the most negative and fungi and soil from the mineral horizon the most positive δ15N values. Positive δ15N values of the fungi indicate their ability to utilize organic soil nitrogen, but the data do not unequivocally show that plants forming mycorrhizas profit from this organic nitrogen source.  相似文献   

6.
We used stable isotope ratios to determine the metabolic routing fraction of carbon and nitrogen in feathers in addition to faecal analysis to estimate diet overlap of six sympatric species of manakins in the eastern lowland forest of Ecuador. Collectively, all species varied from?23.7 to?32.7 ‰ for δ13C, and from 6.0 to 9.9‰ for δ15N, with Machaeropterus regulus showing isotopic differences from the other species. We developed a mixing model that explicitly addresses the routing of carbon and nitrogen to feathers. Interestingly, these results suggest a higher proportion of nitrogen and carbon derived from insects than anticipated based on feeding observations and faecal analysis. A concentration-dependent mixing isotopic model was also used to look at dietary proportions. While larvae and arachnids had higher δ15N values, these two groups may also be preferred prey of manakins and may be more assimilated into tissues, leading to a potential overestimation of the contribution to diet. This study supports the finding that manakin species, previously thought be primarily frugivorous, contain a significant amount of arthropods in their diet.  相似文献   

7.
Carbon and nitrogen stable isotope ratios were measured in hair samples of the Asiatic black bear (Ursus thibetanus) inhabiting the Northern Japanese Alps (NJA) (n?=?20) and the periphery of Nagano City (NC) (n?=?6), in Nagano Prefecture, Japan. The hair of NJA bears, which did not have access to anthropogenic foods, showed lower values of δ13C and δ15N than that of NC bears which had access to garbage and corn fields, especially during the summer. These results reflect somewhat differing diets between the NJA and NC bears. We attempted to assess the feeding history during the hair growth cycle using the growth section analysis method. Each hair sample had been cut into 3?mm lengths from root to tip, labeled, and analyzed along the hair growth. We measured the carbon and nitrogen stable isotope ratios of each 3?mm length of hair sample from one NC bear which had been killed while raiding a corn field. The sections showed wide ranges of isotope ratios, from ?23.2‰ to ?14.6‰ for δ13C, and from 0.3‰ to 4.6‰ for δ15N. It was shown that the diet of this bear shifted dramatically from principally C3 plants to more C4 plants and to foods of animal origin. An analysis of the whole hair reflects just the average feeding habit during hair growth, but the present method can trace its diet history. This method can contribute to obtain precise ecological information of wildlife.  相似文献   

8.
Natural stable isotope ratios (δ15N) of humans can be used for nutritional analyses and dietary reconstruction of modern and historic individuals and populations. Information about an individual’s metabolic state can be obtained by comparison of tissue and dietary δ15N. Different methods have been used to estimate dietary δ15N in the past; however, the validity of such predictions has not been compared to experimental values. For a total of 56 meals and 21 samples of 24-h diets, predicted and experimental δ15N values were compared. The δ15N values were predicted from self-recorded food intake and compared with experimental δ15N values. Predicted and experimental δ15N values were in good agreement for meals and preparations (r?=?0.89, p?r?=?0.76, p?δ15N was mainly determined by the amount of fish, whereas the contribution of meat to dietary δ15N values was less pronounced. Prediction of human dietary δ15N values using standardised food records and representative δ15N data sets yields reliable data for dietary δ15N intake. A differentiated analysis of the primary protein sources is necessary when relating the proportion of animal-derived protein in the diet by δ15N analysis.  相似文献   

9.
Based on the assumptions that human food is available for dogs and isotope diet–tissue differences are similar in dogs and humans, the ‘canine surrogacy approach’ (CSA) has been used to infer patterns of ancient populations. The goal of this study was to test the CSA in urban (Brasília and Piracicaba) and in rural (Ubatuba and Maraã) areas. The hair C and N isotope ratios of modern dogs were compared with those of human fingernails from different regions of Brazil. Our CSA results showed a correlation between dog and human isotopes values: in rural areas δ15N of humans and dogs was not statistically different; contrarily, in urban centres, δ15N of humans was approximately 1?‰ higher (p?<?0.01) than δ15N of dogs; humans had lower δ13C values (p?<?0.01) than dogs in Brasília, Piracicaba and Ubatuba. In Maraã, there was not any significant difference between dogs and humans. We concluded that CSA is still valid as a first approach in modern societies. However, isotopic differences found suggest that in modern societies processed dog food is increasingly disconnecting human and dog, jeopardising the use of CSA in the future if the trend of increasing processed dog food consumption continues to occur.  相似文献   

10.
Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ15N values of synthetic and natural nitrates were 0?±?2?‰ similar to the air N2 from which they are derived. The δ18O values of synthetic nitrates were 23?±?3?‰, similar to air O2, and natural nitrate fertilizer δ18O values (55?±?5?‰) were similar to those observed in atmospheric nitrate. The Δ17O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ17O values of 18?±?2?‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.  相似文献   

11.
δ13C and δ18O values from sapwood of a single Pinus uncinata tree, from a high elevation site in the Spanish Pyrenees, were determined to evaluate the differences between whole wood and resin-free whole wood. This issue is addressed for the first time with P. uncinata over a 38-year long period. Results are also compared with published isotope values of α-cellulose samples from the same tree. The differences in δ13C and δ18O between whole wood and resin-free whole wood vary within the analytical uncertainty of 0.3 and 0.5?‰, respectively, indicating that resin extraction is not necessary for sapwood of P. uncinata. Mean differences between cellulose and whole wood are 0.9?‰ (δ13C) and 5.0?‰ (δ18O), respectively. However, further analyses of different species and other sites are needed to evaluate whether the findings reported here are coherent more generally.  相似文献   

12.

White-tailed kite (Elanus leucurus) populations in the 1930s were close to extirpation in the United States. But by the 1940s, an upward trend towards recovery was apparent and continued to their current stable population levels. These dramatic fluctuations in kite numbers may have been related to changes in rodent prey populations due to the conversion of native habitats to agriculture. To address this question, we evaluated the use of stable isotope analysis in determining if a shift in diet could be isotopically differentiated in current and historic kite populations. We first compared δ 13C, δ 15N, and δ 34S values from present-day kite flight feathers and prey fur samples from four locations in California. The total ranges of isotope values for kite and their rodent prey were similar within each site. Carbon isotope values ranged from m 27.1 to m 22.2 in Arcata, m 26.1 to m 16.9 in Davis, m 27.0 to m 15.0 in Cosumnes, and m 28.2 to m 11.6 in Santa Barbara. Nitrogen isotope values ranged from 3.2 to 15.7 in Arcata, 2.8 to 12.7 in Davis, 4.0 to 15.7 in Cosumnes, and 1.7 to 20.0 in Santa Barbara. Sulfur isotope values ranged from m 7.8 to 12.4 in Arcata, m 1.1 to 9.2 in Davis, 0.7 to 10.9 in Cosumnes, and m 8.6 to 15.6 in Santa Barbara. Carbon, nitrogen, and sulfur isotope values at each site reflect typical trophic enrichments due to physiological processes. At each site, δ 13C and δ 15N values reflected the influence of a predominantly C3 or a mixed C3/C4 plant community. Sulfur isotope values reflect the influence of predominant marine or terrestrial sulfur sources at each site. However, variability in isotope values may limit the usefulness of such analyses for addressing prey utilization and population dynamics.  相似文献   

13.
Abstract

Apple snails Pomacea lineata (SPIX 1827) are widespread in the tropical regions of Brazil as well as in the Pantanal wetland of Mato Grosso in the western part of the country. They have a key position in the Pantanal food web and serve as food for many animals e.g. fishes, birds, and caimans. However, little is known about their feeding preferences and growth rates. Stable isotopes have been used successfully on numerous studies as food source indicator. Therefore, the δ15N and δ13C values of snails from 0.45 to 3.03cm in length, which were collected in the rainy season from March through May, were analyzed. Snails signatures revealed ambiguous evidence for food preferences. δ15N and δ13C values ranged between ?2.8 and 12.4‰ and between ?24.2 and ?16.4‰, respectively. This range of values mirrors the highly variable isotope values of possible food sources comprising C3 and C4 macrophytes. To test whether all common food sources were similarly assimilated, feeding experiments with different diets were conducted. Snail eggs were reared in tanks and offered different but single plants. Snails fed different diets and δ13C values of the food were reflected in the animal tissue. Growth varied considerably in experiments with different diets indicating the preference for certain food sources. Also, the fractionation of nitrogen isotopes between food and animal varied from 0.1 to 17.0‰. The results are explained by different feeding habits, and it is supposed that animals fed either on the plant itself or on bacteria mats growing in the tanks. In an additional experiment juvenile snails were offered one single food with a distinctive C4 grass signature. These snails did not grow detectably, but nevertheless isotope signatures approached to values of the diet.  相似文献   

14.
Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ13 C) and nitrogen (δ15 N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35–463 cm total length), we found prominent size-related changes in the scute keratin δ13 C and δ15 N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.  相似文献   

15.
Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ15N (per mil deviation of 15N/14N, relative to atmospheric nitrogen=0 ‰) values (diet–consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ15N=~+2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet–consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet–consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.  相似文献   

16.
Temporal variations in N concentration and δ15N value of annual tree rings (1 year of time resolution) of two Japanese Black Pine (Pinus thunbergii) and three Japanese Red Pine (Pinus densiflora) trees under current breeding activity of the Great Cormorant (Pharacrocorax carbo) and the Black-tailed Gull (Larus crassirostris), respectively, in central and northeastern Japan were studied. Both species from control sites where no avian input occurs show negative values (δ15N = around?4 ‰ to?2 ‰) which are common among higher plants growing under high rainfall regimes. The δ15N values of P. densiflora show uniformly positive values several years before and after the breeding event, indicating N translocation that moved the absorbed N of a given growth year to tree rings of the previous year while a clear historical value of soil N dynamics was kept intact in the annual rings of P. thunbergii. Long-term N trends inferred from tree rings must take into account tree species with limited translocation rates that can retain actual N annual acquisition.  相似文献   

17.

Many scientists use naturally occurring stable isotopes to reconstruct the diets of animals. However, isotopic ratios may be affected not only by the composition of the diet but also by the amount of food consumed. Thus, an experiment using tilapia (Oreochromis niloticus) was carried out to test the influence of feeding level on δ 13C and δ 15N of fish given a semi-synthetic wheat gluten/wheat starch based diet. In addition, the effect of diet quality was tested by comparing tilapia given this feed with tilapia fed a fish meal/wheat meal based diet. Forty-four tilapia were reared individually. After a prefeeding phase, fish were randomly assigned to five groups, four on the semi-synthetic diet at different feeding levels and one group on the fish meal/wheat meal based diet fed at the equivalent of the highest level of the semi-synthetic diet. The experiment lasted eight weeks. Proximate composition, gross energy content and δ 13C and δ 15N values were determined in feed and fish, for δ 13C separately in the lipids and the lipid-free matter. δ 13C in the lipids and the lipid-free matter and δ 15N of tilapia fed the semi-synthetic diet decreased significantly with increasing feeding rate. The absolute values of the trophic shift in fish fed the semi-synthetic wheat based diet were significantly higher than in fish fed the fish meal/wheat meal based diet. The different δ 13C and δ 15N values in tilapia fed the same diet at different feeding levels and the influence of feed quality on the trophic shift add to the uncertainty involved in the use of stable isotopes in ecological research.  相似文献   

18.
The long-term ‘biodegradation’ on soil amino acids was examined in the control plots of ‘42 parcelles’ experiment, established in 1928 at INRA, Versailles (France). None of the plots is cultivated, but is kept free of weeds, and mixed to a depth of 25 cm twice yearly. Topsoil (0–10 cm depth) samples collected in 1929, 1963 and 1997 were subjected to acid hydrolysis (6 N HCl) for comparison. The distribution and δ15N natural abundance of 20 individual amino acids in the soils were determined, using ion chromatography (IC) and gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS). The total N and amino acid-N (AA-N), respectively, decreased by 54 % and 73 % in the period from 1929 to 1997. The average N loss was comparable for 1929–1963 (period 1) and 1963–1997 (period 2), but AA-N loss was three times faster in the former period. This significant reduction in total AA-N content was mirrored in the individual amino acids, which decreased by 74 %?±?1 % (ranging 58–89 %) between 1929 and 1997. The bulk δ15N values generally increased from 1929 to 1997, mainly associated with comparable or even higher increase of δ15N of the non-AA-N in the soil. The residence time (t 1/2, time in which half of N was lost from a specific soil pool) was ca. 65?±?5 years for the bulk soil, and comparable for periods 1 and 2. However, between periods 1 and 2 it decreased from 128 to 41 years in the non-AA pool, but increased from 59 to 92 years in the AA-N pool. Proline and amino acids that appear early in soil microbial metabolic pathways (e.g. glutamic acid, alanine, aspartic acid and valine) had relatively high δ15N values. Phenylalanine, threonine, glycine and leucine had relatively depleted δ15N values. The average δ15N value of the individual amino acids (IAAs) increased by 1δ unit from 1929 to 1997, associated with a similar rise from 1929 to 1963, and no change thereafter till 1997. However, the δ15N values of phenylalanine decreased by more than 7δ15N units between 1929 and 1997. The δ15N shift of IAAs from 1929 to 1963 and from 1929 to 1997 was not influenced by the relative amount of N remaining compared with the 1929 soil concentrations. The only exception was phenylalanine which showed decreasing δ15N associated with its decreasing concentration in the soil. We conclude therefore that in the absence of plant and fertiliser inputs, no change in the δ15N value of individual soil amino acids occurs, hence the original δ15N values are preserved and diagnostic information on past soil N (cycling) is retained. The exception was phenylalanine, its δ15N decreased with decreasing concentration from 1929 to 1997, hence it acted as a ‘potential’ marker for the land use changes (i.e. arable cropping to a fallow). The long term biological processing and reworking of residual amino acids resulted in a (partial) stabilisation in the soil, evidenced by reduced N loss and increased residence time of amino acid N during the period 1963–1997.  相似文献   

19.
The March 2011 Mega-Tsunami in eastern Japan damaged at different degrees the black pine (Pinus thunbergii) forests along the coast. In order to evaluate the recovery of black pine four years later, tree-ring samples from 9 trees for the period 2002–2014 were analyzed for ring growth and stable isotopes (δ13C, δ15N and δ18O). The results showed that annual tree-ring width decreased approximately 70?% from the year 2011 to 2014 compared to the period previous to the tsunami (2002–2010). The multiple isotopic analyses showed that the reduction in growth was caused by soil salinity that prompted stomatal closure and an abrupt increase of tree-ring δ13C. Sea water deposition in the soil did not affect tree-ring δ18O values. Two years after the tsunami, decreasing tree-ring δ13C values caused by apparently photosynthetic recovery did not translate into radial tree-growth, indicating a possible shift in carbon allocation to foliage and mainly roots as a defense mechanism to sodium toxicity. The dual δ13C-δ18O model explains neither the limited growth nor the subsequent recovery in δ13C. Similarly tree-ring δ15N indicated that there was no difference in nitrogen availability before and after the tsunami, suggesting that nutrients were not a limitation but rather soil salinity.  相似文献   

20.
Abstract

The stable isotope composition of hydrogen (δ2H) and oxygen (δ18O) in monthly precipitation and river water (Sava River and Danube) samples in the Belgrade area gathered between 1992 and 2005 are determined. The local meteoric water line δ2H=7.8 (±0.2) δ18O+7.3(±1.6) (r 2=0.98, n=60, σ=0.52) for the whole period of observation is close to the global meteoric water line. The amount-weighted mean δ2H and δ18O values of precipitation were?65±27 ‰ and?9.4±3.4 ‰, respectively. Good correlation between δ18O values (r>rsim0.67) and ambient temperature and relative humidity was obtained. Stream-water data ranged from?94 to?60 ‰ for δ2H and from?11.0 to ~5.7 ‰ for δ18O with highly statistically significant difference (p>0.01) between the Sava River and the Danube. In addition, the isotopic compositions of local precipitation and adjacent river water at monitoring sites were compared. Obtained data will give an opportunity to improve the knowledge of mixing stream water and local groundwater, and assessment of potential groundwater risks and pressures in the Belgrade basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号