首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘奇福  李方家  刘军 《物理学报》2014,63(9):94209-094209
飞秒激光光谱学实验研究的深入与拓展对飞秒激光脉冲的要求也越来越高.比如多色抽运探测实验需要同时用到多个不同频率的超短飞秒激光脉冲.本文设计了一个更加简单紧凑的实验装置,对两束不同中心频率的入射光引入相反啁啾,在厚度为0.5 mm的CaF2晶体中利用级联四波混频获得了光谱半高全宽近100nm,支持傅里叶转换极限脉宽小于10 fs的多色飞秒激光脉冲.这一结果将为拓展飞秒激光光谱学研究和应用发挥重要作用.  相似文献   

2.
We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.  相似文献   

3.
王云才  赵跃鹏  张明江  安义  王纪龙 《物理学报》2007,56(12):6982-6988
从理论和实验上研究了利用光注入半导体激光器对高重复速率光脉冲产生的周期振荡和时钟分频现象.结果表明,光注入半导体激光器引起的二倍周期振荡是使注入脉冲重复频率分频的直接原因.通过耦合速率方程,数值模拟了半导体激光器在外光注入时输出光的时间序列和功率谱,并且分析了激光腔内各种周期振荡的特征.研究表明,当注入光使半导体激光器出现稳定的二倍周期振荡,且注入光的重复频率为此振荡频率的二倍时,时钟分频即可产生实验中,采用重复频率为6.32GHz的光脉冲注入Fabry-Perot激光器,实现了3.16GHz时钟分频信号 关键词: 周期振荡 时钟分频 光谱侧带 光注入  相似文献   

4.
Jhon YM  Byun YT  Woo DH 《Optics letters》2006,31(18):2678-2680
For the first time to our knowledge, pulse-amplitude equalization of rational-harmonically mode-locked fiber ring laser pulses has been experimentally demonstrated using a polarization-maintaining laser resonator without any additional device. The pulse-amplitude distribution of the laser pulses was controlled by the modulator driving power, and stable pulse-amplitude-equalized pulses with repetition rates of 20, 30, and 40 GHz have been obtained in the linear region of the modulator.  相似文献   

5.
Intense nanosecond pulses have been produced from a cw dye laser using a dye amplifier pumped by 6 ns nitrogen laser pulses. The pulses have a transform limited spectrum and are convenient for coherent propagation experiments.  相似文献   

6.
Tunable subpicosecond pulses have been obtained from a synchronously mode-locked Oxazine-1 dye laser by tandem pumping with output pulses of a mode-locked Rhodamine 6G dye laser. The effects of cavity detuning on the pulse-width and the second harmonic power (the peak intensity of the autocorrelation trace) have been investigated. The experimental results are found to be in good agreement with those predicted by a recent model analysis.  相似文献   

7.
High power femtosecond pulses in the Vacuum Ultra Violet (VUV) have been generated through the nonlinear interaction of femtosecond KrF pulses with xenon and argon gas. Under near resonant two photon excitation of xenon by a femtosecond KrF laser, parametric four wave mixing processes lead to VUV pulses at 147 and 108 nm with pulse energies in the 10 µJ range. Tuning is demonstrated by mixing the KrF pulse with a 500 fs dye laser pulse at 497 nm, resulting in 165 nm emission. In argon, a three photon resonance leads to third harmonic generation at 83 nm and micro joule level pulses near 127 nm generated by a six wave mixing process. Since the spectra of the VUV pulses show an ionization-induced blue shift with increasing KrF laser intensity, the VUV pulses can be shown to have temporal duration less than the pulse width (450 fs) of the KrF laser. Blue shifting of the third harmonic of the KrF laser in argon is dominated by a reduction in the neutral gas density rather than by an increase in the electron density.  相似文献   

8.
In this paper it has been described part of the research devoted to the development of a complete non-intrusive experimental modal analysis procedure based on laser techniques both for excitation and for measurement. In particular, attention has been focused on the thermal effects generated by laser pulses on the excited structure. An analytical model of the energy exchange between the light pulse and the target surface is proposed together with a finite element model of thermal and mechanical behaviour of the structure under excitation. Both the models (analytical and numerical) have been experimentally validated by measuring the thermal and the vibration responses induced by the laser pulses. The experimental part of the study has been performed on a cantilever beam excited with laser pulses from an Nd : YAG source (532 nm, 100 mJ/pulse) using an high-speed infrared camera and a scanning laser Doppler vibrometer. Results from this work can be used to improve understanding concerning the features of laser excitation and to establish a mechanical equivalent system of forces and moments, useful in order to increase the accuracy in the measurements of modal parameters when laser pulses are used as excitation sources.  相似文献   

9.
We have developed a technique for the temporal characterisation of weak deep-ultraviolet (DUV) ultrashort laser pulses by combining asynchronous optical sampling with difference-frequency mixing. The intensity profile of picosecond DUV pulses, with peak powers as low as 2.5 W, have been measured accurately with a resolution of 50 fs. The method can be extended to complete amplitude and phase characterisation of few femtosecond laser pulses at DUV wavelengths.  相似文献   

10.
We have studied the production of electron–positron pairs due to polarization of vacuum in the presence of the strong electromagnetic field of two counterpropagating laser pulses. The structure of the electromagnetic field with the circular polarization has been determined using the 3D model of focused laser pulses, which was proposed by Narozhny and Fofanov. Analytic calculations have shown that the electric and magnetic fields are almost parallel to each other in the focal region when the laser pulses are completely transverse in the electric (E-wave) or magnetic (H-wave) field. On the other hand, the electric and magnetic fields are almost orthogonal when laser pulses consist of a mixture of E- and H-waves of the same amplitude. It has been found that although the latter configuration of colliding laser pulses has a much higher pair production threshold, it can generate much shorter electron–positron pulses as compared to the former configuration. The dependence of the production efficiency of pairs and their spatiotemporal distribution on the polarization of laser pulses has been analyzed using the structure of the electromagnetic field in the focal plane.  相似文献   

11.
Nanobumps and nanoholes have been formed in gold and silver films with various thicknesses on a dielectric substrate by strongly focused single nanosecond pulses of a Nd:YAG laser. An apertureless dielectric fiber probe and an aspherical lens with a numerical aperture of 0.5 were used to focus laser radiation into a diffraction-limited spot on the surface of gold and silver films, respectively. Atomic force and electron microscopy studies have demonstrated that the shape and dimension of nanostructures, as well as the threshold parameters of laser radiation for their formation, are determined by the thickness of a modified film (“size effect”) and by the duration of a laser pulse owing to the lateral heat conduction in films (nonlocal energy deposition effect). Mechanisms of the dynamic formation of such structures in metallic films by nanosecond laser pulses due to phase transformations of their material have been discussed.  相似文献   

12.
Interferences of free electron wave packets generated by a pair of identical, time-delayed, femtosecond laser pulses which ionize excited atomic potassium have been observed. Two different schemes are investigated: threshold electrons produced by one-photon ionization with parallel laser polarization and above threshold ionization electrons produced by a two-photon transition with crossed laser polarization. Our results show that the temporal coherence of light pulses is transferred to free electron wave packets, thus opening the door to a whole variety of exciting experiments.  相似文献   

13.
A high efficiency and high peak power laser system with short-pulse and good beam quality has been demonstrated by using a master oscillator power amplifier with two-pass amplification configuration. The master oscillator, end-pumped with a fiber-coupled laser diode array, provides low power but excellent beam quality pulses, and the amplifier boosts the pulse energy by orders without significant beam quality degradation. Short pulses of 8.5 ns with energy up to 130 mJ and approximately diffraction limited beam quality have been demonstrated.  相似文献   

14.
Stable, tunable, sub-picosecond pulses have been obtained by synchronously pumping a Rhodamine 6G dye laser with a frequency-doubled CW modelocked neodymium YAG laser. Careful attention has been paid to minimize amplitude and timing instabilities, resulting in dye laser pulses shorter than 500 fs. The main advantage of this new pumping source over current synchronously pumped dye lasers is that it is particularly well suited to short pulse amplification. Using this technique amplification of 2 × 106 has been achieved.  相似文献   

15.
Fang HH  Ding R  Lu SY  Wang L  Feng J  Chen QD  Sun HB 《Optics letters》2012,37(4):686-688
Two-beam interference ablation of 1,4-Bis(4-methylstyryl)benzene organic crystal by short laser pulses (10 ns, 355 nm) is presented. The influence of laser fluence, interference period, and pulse number on the morphology have been studied. The morphology is closely associated with the molecular interactions in the crystals, and it could be well controlled by adjusting the laser fluence and pulses number. Through interference ablating the crystals with high fluence pulses, and then treated with low fluence laser pulses, grating structures with smooth surface could be fabricated without any additional process.  相似文献   

16.
We report on the welding of fused silica with ultrashort laser pulses at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted fused silica samples. Due to the nonlinear absorption in the focal volume and heat accumulation of successive pulses, the laser acts as a localized heat source at the focus position. Here, we analyze the influence of the laser and processing parameters on the amount of molten material. Moreover, we determine the achievable breaking stress by a three point bending test. With optimized parameters up to 75% of the breaking stress of the bulk material have been obtained.  相似文献   

17.
Ramsey schemes with pulses of different lengths and with a composite pulse have been analyzed taking into account a finite width of the laser line and spontaneous relaxation of atomic levels. The optimal parameters of pulses corresponding to the maximum suppression of the excitation-related shift and the maximum resonance amplitude have been found for both schemes. According to the numerical results, spontaneous relaxation of the atomic levels and a finite width of the laser line must be taken into account in the calculation of the optimal parameters of the excitation pulses. The Ramsey scheme with a composite pulse is less sensitive to fluctuations of the Rabi frequency than the scheme with pulses of different lengths.  相似文献   

18.
Liu  H. J.  Li  X. F. 《Laser Physics》2011,21(12):2118-2121
A compact tunable high power picosecond green laser pulse source based on frequency doubling of an Yb-doped fiber amplifier seeded by a gain switch laser diode has been developed. The fiber amplifier generates the picosecond infrared pulses with average power of 10.3 W, repetition rate of 1 MHz, pulse duration of 150 ps, and tunable range of 20 nm around 1064 nm. For underwater use, the tunable output infrared pulses are frequency doubled into picosecond green laser pulses, which can be tuned from 527 to 537 nm with average power of more than 1.1 W, corresponding to an overall conversion efficiency of 10.7% by a BBO nonlinear crystal. This kind of laser source will have potential application for underwater optical communication.  相似文献   

19.
We present experimental and modelling results of the first self-injected excimer laser. The intracavity losses of a XeCl oscillator are properly modulated by a Pockels cell allowing generation, amplification and extraction of short laser pulses with selectable duration in the range of 1–12 ns, tailored temporal profile and peak power increment up to a factor of three. Longer output laser pulses, up to 100 ns, can be obtained by slicing the intracavity laser radiation without peak power increment. Laser output peak powers in excess of 2 MW have been obtained, with remarkable reproducibility characteristics.ENEA fellow  相似文献   

20.
Argon X-ray lines have been used in the past to diagnose laser-compressed targets. We extend such measurements to: (a) very high densities (ρ ≈ 9 gcm-3) obtained when imploding small shells with short laser pulses, and (b) lower densities but higher πR values (≈4 mg cm-2) obtained with large DT-Ar filled shells, imploded with long laser pulses. The 24-beam OMEGA laser has been used with 4–5 TW, 100 ps pulses in (a), and 1.5–2 TW, 1 ns pulses in (b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号