首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~?10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams. These results demonstrate clearly that the wide bandwidth and ultrasensitive nature of the femtosecond enhancement cavity enables powerful real-time detection and identification of many molecular species in a massively parallel fashion.  相似文献   

2.
王永胜  赵彤  王安帮  张明江  王云才 《物理学报》2017,66(23):234204-234204
混沌外腔半导体激光器输出明显存在弛豫振荡特征,弛豫振荡频率小于外腔振荡频率时,外腔半导体激光器输出态是短腔机制;反之,外腔半导体激光器输出态是长腔机制.首先对比分析了弛豫振荡频率为5.6 GHz,腔长对频谱有效带宽的影响.然后同时调节注入电流和载流子寿命来大幅度地增加弛豫振荡频率.最后在弛豫振荡频率为40 GHz、腔长为毫米级(4—20 mm)时,实现由短腔机制到长腔机制的转换,进而分析了外腔反馈率和外腔长对外腔半导体激光器频谱带宽的影响.分析结果表明:短腔机制下,输出混沌态不稳定,0.1 mm的偏差就会导致混沌态与非混沌态之间的转化;长腔机制下,输出混沌态稳定,输出混沌区域较大,证明长腔机制下更有益于获得宽带连续的混沌区域.在弛豫振荡频率为40 GHz、外腔长度为毫米级时,实现了外腔半导体激光器的长腔机制,从而增大了高带宽混沌的参数空间.  相似文献   

3.
通过分析非稳腔DF化学激光器光腔内激光路径特性,指出非稳腔DF化学激光器输出光斑上下游光谱振荡路径不同导致输出光谱存在一定差异。试验测量了一台连续波DF化学激光器光斑上下游光谱,结果表明:非稳腔DF化学激光器光斑上下游光谱主要谱线成分未见显著差异;光斑上下游谱线相对强度存在一定差异;光斑上游各谱带相对强度最大值谱线转动量子数趋向于各谱带低转动量子数方向。根据实测光谱,对光斑上下游光谱所表征光腔温度和相对粒子数范围进行了估算,得到光腔上游平均温度要低于光腔下游平均温度。  相似文献   

4.
The properties of a frequency-shifted feedback (FSF) laser using a translated grating as the frequency-shifting element are investigated. FSF operation is attained by feedback of the first-order diffracted light from a grating coupler, which is translated in a direction perpendicular to the grating normal. A diode-pumped Nd:YVO(4) gain medium is used. Chirped-frequency components are periodically generated with a chirp rate of 1.8 THz / s. The unique spectral characteristics of this device are demonstrated with a Michelson interferometer and a heterodyne experiment.  相似文献   

5.
We propose a novel flat optical frequency comb generation system that employs fiber loop modulation and experimentally demonstrate its operation. Generally, when an external laser beam is injected into a fiber loop system including an optical modulator and an amplifying medium, multiple sidebands are generated exponentially. On the other hand, the fiber loop starts mode-locked oscillation at a center frequency to maximize the round-trip gain in the fiber loop from the seeds of the injected laser sidebands. By locking the sidebands from fiber loop modulation with the mode-locked oscillation in the fiber loop, the synchronous spectrum between the mode-locked oscillation and the sidebands can be shaped into a flat spectrum. Thus, a flat optical frequency comb with a flatness of about ±1 dB is obtained in the spectral bandwidth of about 1 THz.  相似文献   

6.
The steady-state amplification of light beam during two-wave mixing in photorefractive materials has been analysed in the strong nonlinear regime. The oscillation conditions for unidirectional ring resonator have been studied. The signal beam can be amplified in the presence of material absorption, provided the gain due to the beam coupling is large enough to overcome the cavity losses. Such amplification is responsible for the oscillations. The gain bandwidth is only a few Hz. In spite of such an extremely narrow bandwidth, unidirectional oscillation can be observed easily at any cavity length in ring resonators by using photorefractive crystals as the medium and this can be explained in terms of the photorefractive phase-shift. The presence of such a phase-shift allows the possibility of the non-reciprocal steady-state transfer of energy between the two light beams. Dependence of gain bandwidth on coupling constant, absorption coefficient of the material’s cavity length (crystal length) and modulation ratio have also been studied.   相似文献   

7.
We report on peculiar dynamic features of laser oscillation in a cavity with a semiconductor junction as the gain medium and an intracavity atomic absorber. The output face of the semiconductor is antireflection coated, and lasing action is achieved by using a diffraction grating to close the laser cavity. The spectral analysis of the laser emission evidences a stable emission with narrow linewidth when the oscillating frequency is resonant with the atomic absorber. We also observe frequency bistability and instability. The change between these regimes is controlled through the bias current in a very reproducible way.  相似文献   

8.
开展了40 kW预群聚注入锁相回旋管的理论与模拟设计。基于全电磁仿真方法完成了预群聚腔的设计,并采用给定场理论对电子束经过预调制腔后的群聚状态进行了计算。采用自洽理论获得了回旋管的自由振荡工作参数,并计算了振荡频率随各种参数变化的规律,由此提出了锁相带宽的要求。采用PIC粒子模拟进行了锁相状态的模拟,得到7 mm漂移距离下锁定增益可达30.5 dB,相应的锁相带宽为20 MHz。如果进一步增长漂移距离或者进一步增大输入功率,锁相带宽还会增大。理论计算和粒子模拟结果表明40 kW级回旋管注入锁相具有良好的可行性。  相似文献   

9.
We observe a nonlinear response of a dual-wavelength Nd:YAG laser when subjected to low-frequency periodic modulations of cavity losses. The modulation frequency is far from the relaxation oscillation frequency. The harmonic resonances of the two laser wavelengths associated with antiphase intensity oscillations are demonstrated and resonances up to the fourth order were observed. For relatively weak modulation, the intensity oscillation frequency of the laser is equal to the modulation frequency. Harmonic resonances occur under a stronger modulation. We find that more harmonic components appear when the modulation frequency is increased. Furthermore, with enhancing the modulation, the dominant frequency of the intensity oscillations of both wavelengths is shifted toward the higher-order harmonic frequency.  相似文献   

10.
The coherent oscillation, because of nearly degenerate four-wave mixing in photorefractive crystals with two types of movable charge carriers, occurs at two spectral lines symmetrically shifted with respect to the pump frequency. Consequently the output oscillation exhibits the high contrast intensity modulation. The frequency separation of two oscillation modes (and modulation frequency of the output intensity) depend on the incident light intensity and spatial frequency of the developing grating. A model is presented explaining this type of oscillation by the two-maxima shape of the gain spectrum in crystals with sufficiently different relaxation times of two space-charge gratings, one formed by movable electrons and the other one by movable holes. The experimental data for coherent oscillator with tin hypothiodiphosphate (Sn2P2S6) are in reasonable quantitative agreement with the calculations. Received: 12 November 1998 / Revised version: 11 January 1999 / Published online: 7 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号