首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The feasibility of sound absorbing by a vibrating plate with piezoelectric material and shunt circuits is theoretically investigated.Based on an equivalent compliance of a piezoelectric wafer shunted with RL circuits,the governing equations for the flexural vibration of the plate with the piezoelectric wafer are derived using Lagrange's approach.The equations take into account not only the mass,stiffness and structural damping of the plate and the wafer,but also the electrical resistance and electrical i...  相似文献   

2.
The mechanism of the sound absorption of a thin plate with piezoelectric mate- rials shunted with passive electrical circuits is investigated using experimental measurements. The effect of shunting electrical resistance and inductance on the sound absorption coefficient, acoustic resistance and reactance of the plate is thoroughly analyzed. The experimental results show that the sound absorption coefficient and the sound absorbing bandwidth of the plate near its first resonant mode can be significantly improved by adjusting the RL parameters.  相似文献   

3.
The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied.It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory.The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations,which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams.An improved stability criterion is obtained using periodic Lyapunov functions.The boundary points on the stable regions are determined by using a small parameter perturbation method.Numerical results and discussion are presented to highlight the effects of beam length,axial force and damped coefficient on the stability criterion and stability regions.While some stability rules are easy to anticipate,we draw some conclusions:with the increase of damped coefficient,stable regions arise;with the decrease of beam length,the conditions of the damped coefficient arise instead.These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.  相似文献   

4.
From the sound velocity measured using the Brillouin scattering technique, the elastic, piezoelectric, and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature. The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal, measured previously by Brillouin scattering and the low-frequency equivalent circuit methods. However, their electromeehanical properties are significantly different. Based on the sound propagation equations and these results, the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated. Some properties of sound propagation and electromechanical coupling in the crystal are discussed.  相似文献   

5.
An analysis is presented to investigate the effect of temperature-dependent viscosity on free convection flow along a vertical wedge adjacent to a porous medium in the presence of heat generation or absorption. The governing fundamental equations are transformed into the system of ordinary differential equations using scaling group of transformations and are solved numerically by using the fifth-order Rung-Kutta method with shooting technique for various values of the physical parameters. The effects of variable viscosity parameter on the velocity, temperature and concentration are discussed. Numerical results for the problem considered are given and illustrated graphically.  相似文献   

6.
In order to solve the bad low frequency sound absorption of the Micro-Perforated panel(MPP)absorber,mechanical impedance was introduced in the back of the MPP absorber to form a composite structure.According to the same particle vibration velocity on both sides of a plate,the mechanical impedance plate transfer matrix could be obtained.The units of the mechanical impedance,cavity and MPP were connected in series with the use of the transfer matrix method,thus creating the composite structure’s theoretical calculation model.The quality factor affecting absorption bandwidth was analyzed.Bandwidth is inversely proportional to the mechanical impedance plate mass.During the experiments,when at close to 400 Hz,the composite structure reached an absorption peak with a coefficient of above 0.8.Experimental results concurred with theoretical calculations.Mechanical resonance is added based on the traditional MPP resonance sound absorption mechanism.Through this,the performance of low frequency sound absorption can be improved without increasing the thickness of the structure.The frequency band can be broadened by reducing the mechanical impedance plate mass and controlling its boundary-damping coefficient.  相似文献   

7.
An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs.  相似文献   

8.
The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a twoparameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge–Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.  相似文献   

9.
The Kirchhoff approximation with a modified reflection coefficient is used to calculate the three-dimensional acoustic scattering of a Gaussian rough under-ice surface.The concept of a local statistical average reflection coefficient of an under-ice surface is proposed in the calculation model.The scattered sound field of a two-dimensional Gaussian rough under-ice surface is divided into coherent scattering and incoherent scattering.A formula is derived for the scattering coefficient of each scattering component,and the three-dimensional scattering intensity is obtained.The relationships between the scattering intensity and(ⅰ) the root-meansquare height of the Gaussian rough under-ice surface,(ⅱ) the angle of incidence,and(ⅲ) the sound frequency are analyzed.The scattering intensity of a Gaussian rough under-ice surface is measured in a laboratory water tank,and the calculation results of the theoretical model are verified.The experimental results are compared with those of the theoretical model using(ⅰ) the present local statistical average reflection coefficient of an under-ice surface and(ⅱ) the mirror reflection coefficient of an under-ice surface from the literature.The calculation results of the model using the local statistical average reflection coefficient agree well with the experimental results.  相似文献   

10.
A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses.In the finite element model,the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method,and the dynamical interaction between both crack faces is modeled using a contact-impact theory.In the simulations,the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis,especially,the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail.Meanwhile,the related ultrasonic infrared images are also obtained experimentally,and the theoretical simulation results are in agreement with that of the experiments.The results show that,by using the theoretical method,a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号