首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we investigate the effects of external electric and magnetic fields on a three-dimensional harmonic oscillator with axial symmetry. The energy spectrum of such a system is non-degenerate due to the presence of the magnetic field. The degeneracy of the energy spectrum in the absence of a magnetic field is discussed. The influence of electric and magnetic fields, as well as the frequencies of the oscillator on the probability distribution function is analyzed. Optical transition probabilities are examined by deriving the selection rules in dipole approximation for the quantum numbers n p , m l and n z . Employing stationary perturbation theory, the effects of deformations of the potential energy function on the oscillatory states are analyzed. Such models have been used in literature in analysis of spectra of axially symmetrical molecules and cylindrical quantum dots.  相似文献   

2.
Following Pevtsov and Latushko, we study the current helicity pattern of the large-scale magnetic field on the photosphere. We use the same technique as theirs to derive the vector magnetic field (B r , B θ , B ϕ ) from full-disk longitudinal magnetograms based on the assumption that large-scale magnetic fields evolve rather slowly and the variations of the longitudinal magnetic fields within certain time duration are caused by the changing position angles only. Different from their study, we have calculated the current helicity maps directly from the derived vector magnetograms, rather than from obtaining the latitudinal variation of h c by ignoring the role of B θ component and averaging B r and B ϕ over all solar longitudes. This approach significantly strengthens the evidence of the hemispheric rule presented in the reconstructed vector magnetic field. Our study shows that the established hemispheric sign rule, that is, positive helicity sign in the southern hemisphere and negative helicity sign in the northern hemisphere, is applicable everywhere in the global magnetic field, namely, also evident in weak fields outside active regions, and that the obtained sign pattern is independent of the longitudinal magnetograms and the parameters that we have used.  相似文献   

3.
We have used far-i.r. radiations from a HCN laser (336.55 and 310.88 μm) in conjunction with a pulsed magnetic field (0–350 kOe) to observe the ferromagnetic resonance absorption in FeCl2 and FeBr2 monocrystals. The resonant lines were obtained for high magnetic field (? 100 kOe) well above the metamagnetic transition field and correspond to the excitation of ferromagnetic magnons at k = 0. From experimental results we found that the gz spectroscopic tensor component of both FeCl2 and FeBr2 is gz = 3.7 ± 0.05 and that the gap energies of antiferromagnetic magnons in zero field are respectively 16 and 17.3 cm-1 for FeCl2 and FeBr2.  相似文献   

4.
Semel and Skumanich proposed a method to obtain the absolute electric current density, |J z |, without disambiguation of 180° in the transverse field directions. The advantage of the method is that the uncertainty in the determination of the ambiguity in the magnetic azimuth is removed. Here, we investigate the limits of the calculation when applied to a numerical MHD model. We have found that the combination of changes in the magnetic azimuth with vanishing horizontal field component leads to errors, where electric current densities are often strong. Where errors occur, the calculation gives |J z | too small by factors typically 1.2–2.0.  相似文献   

5.
The Landau bands in crossed magnetic and electric fields are studied for the case of a Weyl semimetal. The expression for the energy spectrum of such a system is obtained using an approach based on the Lorentz shift. It is shown that the electric field leads to a substantial transformation of the Landau bands. At the electric field equal to vF H/c, the collapse of the Landau levels occurs and the motion becomes completely linear. Under this condition, the wavefunction is nonzero only for the states with p z = 0. This significantly affects the phenomena related to the unusual surface states, which are characteristic of such materials.  相似文献   

6.
The study of Weyl semimetals is one of the most challenging problems of condensed matter physics. These materials exhibit interesting properties in a magnetic field. In this work, we investigate the Landau bands and the density of states (DOS) oscillations in a Weyl semimetal in crossed magnetic and electric fields. An expression is obtained for the energy spectrum of the system using the following three different methods: an algebraic approach, a Lorentz shift-based approach, and a quasi-classical approach. It is interesting that the energy spectrum calculated in terms of the quasi-classical approach coincides with the spectrum obtained using the microscopic approaches. An electric field is shown to change the Landau bands radically. In addition, the classical motion of a three-dimensional Dirac fermion in crossed fields is studied. In the case of a Dirac spectrum, the longitudinal (with respect to magnetic field) component of momentum (p z H) is shown to be an oscillating function of the magnetic field. When the electric field is vH/c, the Landau levels collapse and the motion becomes fully linear in an unusual manner. In this case, the wavefunction of bulk states vanishes and only states with p z = 0 are retained. An electric field affects the character of DOS oscillations. An analytical expression is obtained for the quantum capacitance in crossed fields in the cases of strong and weak electric fields. Thus, an electric field is an additional parameter for adjusting the diamagnetic properties of Weyl semimetals.  相似文献   

7.
On the basis ofH α filtergrams we study the compact active regions (ARs) NOAA 6652 and 6654 with a few spots characterized by an increased solar activity and geoefficiency. The variation of morphology of ARs is studied during their evolution. Ejection features and activization of filaments are analyzed along with the correlation of their behavior with the flare situation in an AR. The relation with the solar magnetic structures is established.  相似文献   

8.
The electronic structure, spin splitting energies, and g factors of paramagnetic In1-xMnxAs nanowires under magnetic and electric fields are investigated theoretically including the sp-d exchange interaction between the carriers and the magnetic ion. We find that the effective g factor changes dramatically with the magnetic field. The spin splitting due to the sp-d exchange interaction counteracts the Zeeman spin splitting. The effective g factor can be tuned to zero by the external magnetic field. There is also spin splitting under an electric field due to the Rashba spin-orbit coupling which is a relativistic effect. The spin-degenerated bands split at nonzero kz (kz is the wave vector in the wire direction), and the spin-splitting bands cross at kz = 0, whose kz-positive part and negative part are symmetrical. A proper magnetic field makes the kz-positive part and negative part of the bands asymmetrical, and the bands cross at nonzero kz. In the absence of magnetic field, the electron Rashba coefficient increases almost linearly with the electric field, while the hole Rashba coefficient increases at first and then decreases as the electric field increases. The hole Rashba coefficient can be tuned to zero by the electric field.  相似文献   

9.
The hyperfine parameters of hyperfine fields, electric field gradients and isomer shifts at the Fe site are investigated based on the first-principles calculations of the electronic structures using LDA (GGA)+U method in the low-temperature orthorhombic antiferromagnetic phase of undoped BaFe2As2. It is fond that the electric field gradient of Fe nucleus is highly related with the electronic structures close to the Fermi level. Though the addition of negative on-site Coulomb interaction to Fe-3d states improves the calculated magnetic moment of Fe atom and the hyperfine parameters of Fe nucleus when U = ?0.1 Ry (?0.08 Ry) for GGA+U (LDA+U) method, a negative U correction does not capture the right physics of this system. The calculations prove the strong coupling between the magnetic, structural and electronic properties in antiferromagnetic BaFe2As2 parent.  相似文献   

10.
Transport properties of the narrow-gap semiconductors PbTe, PbSnTe, and HgCdTe were studied in the extreme magnetic quantum limit. With low carrier densities an anomalous behaviour was found for the longitudinal (?) and the transverse (?) magnetoresistance, for the Hall effect, and in the IU-characteristic. ? increased near a critical magnetic field by almost two orders of magnitude. A pronounced kink in the ?Bα dependence took place at the critical field. This critical magnetic field of the anomaly shows the features predicted for a Wigner condensation, i.e. the dependence on carrier density in all the three semiconductors. The new state at high magnetic fields is obviously a free carrier effect since it can be annihilated by heating the electrons in an electric field.  相似文献   

11.
The ν L ν R ν L double conversion of the Dirac neutrino helicity is analyzed under supernova conditions, in which case the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, while the second stage is caused by a resonance neutrino-spin flip in the magnetic field of the supernova envelope. It is shown that, if the neutrino has a magnetic moment in the range 10?13 µB < µ ν < 10?12 µB and if a magnetic field of strength 1013 G exists between the neutrinosphere and the region of shock-wave stagnation, an additional energy on the order of 1051 erg, which is sufficient for stimulating a damped attenuated shock wave, can be injected in this region within the stagnation time.  相似文献   

12.
A computational model which enables to evaluate the distribution of the critical currents, electric fields and the voltage in the winding of a solenoidal high temperature superconducting (HTS) magnets subjected to an external magnetic field parallel with the magnet axis, was developed. The model comes out from the well-known power law between the electric field and the transport current of the HTS tape short sample. It allows to predict the voltage–current V(I) characteristics of both the pancake coils and the complete magnet. The model was applied to the magnet system consisting of 22 pancake coils made of multifilamentary Bi(2223)/Ag tape at 20 K, which is subjected to an external uniform magnetic field parallel with the coil axis. A rather unexpected behavior of the magnet at different operating conditions (operating current and external magnetic field strength) is predicted, analyzed and reported together with a theoretical explanation. On one hand, the external uniform magnetic field parallel with the coil axis increases the resulting magnetic field strength, however, on the other hand it simultaneously decreases the angle between the resulting magnetic field and the tape surface. Thus, the effect of higher magnetic loading caused by the presence of an external magnetic field strength which is acting on individual turns located close to the coil’s flanges is compensated by more favorable orientation of the tape with respect to the resulting magnetic field. As a result, increase in the critical currents of these turns is expected. Further, the results indicate, that in case of the high field HTS insert coils the anisotropy in the Ic(B) characteristic does not play a substantial role. As a consequence, the technology of the production of the tapes for high field insert HTS coils should concentrate rather on the tapes having the current carrying capacity as high as possible, than on the attempt how to decrease the anisotropy in the Ic(B) by changing the architecture of the filaments in the tape.  相似文献   

13.
Level-crossing technique applying parallel electric and magnetic fields has been used to investigate the influence of an electric fieldE z on the hyperfine structure of the 4p 2 P 3/2-state. The Stark shift of the level-crossing nearH z =155 Oe and the modification of the magnetic zero-field level-crossing signal due to the electric fieldE z was observed. Both experimental results can be explained with a Stark-constantβ=7.2(1.1)kc(kV/cm)?2.  相似文献   

14.
Photoconductivity of Pb1 ? x Sn x Te(In) solid solutions in the terahertz spectral range is defined by a new type of local electron states linked to the quasi-Fermi level. The paper deals with investigation of the influence of electric current and magnetic field on the amplitude of the terahertz photoconductivity in Pb1 ? x Sn x Te(In) alloys of different composition. It is shown that the density of local electron states responsible for the positive persistent photoconductivity decreases with increasing electric current via a sample, as well as with transition to the hole conductivity in samples with a high content of tin telluride (x > 0.26). It is found that the magnetic field dependence of the positive photoconductivity is non-monotonous and has a maximum. The maximum position in magnetic field is proportional to the terahertz radiation quantum energy. Mechanisms responsible for the effects observed are discussed.  相似文献   

15.
A plasma was produced by a high frequency electric quadrupole field (v=200 Megacycles) at gas pressures of 10?4 to 5·10?3 mm Hg in a quarz glass torus. The torus was placed between the poles of an air-core betatron with the following properties: radius of equilibrium orbit 20 cm, maximum accelerating field strength 80 V/cm, end energy 1.5 MeV. Associated with conduction currents of some 100 A, energetic Bremsstrahlung was observed and attributed to 1,2 MeV electrons. The number of accelerated electrons was of the order of 1011 per pulse. The intensity and energy of the radiation, together with the time dependence of the plasma current, were observed as function of different parameters, such as the gas pressure, high frequency amplitude, induced acceleration field strength, for different gases. The energetic radiation disappears when, because of the self-induced magnetic field, the stability condition for the betatron equilibrium is no longer fulfilled.  相似文献   

16.
Mössbauer effect measurements with the 79,5 keVγ-transition in Gd158, populated by thermal neutron capture in Gd157 are reported. In Gd metal, GdF3 and GdCl3, the values obtained for the electric field gradient are (?0.7±0.4), (11.9±5.0) and (?7.5±0.5) · 1017 V/cm2 respectively. The internal magnetic field in Gd metal was measured to beH int=312±23 kG and we derived for theg factor of the 2 + level the valueg R=0.385±0.022. The change of the mean square nuclear radius between the ground state and the first excited stateΔ 〈r2〉=+(0.4±0.3) · 10?3 fm2, as extracted from the measurements, will be compared with model calculations of nuclear rotation.  相似文献   

17.
We have investigated the current for the system of vibrating quantum dot irradiated with a rotating magnetic field and an oscillating magnetic field by nonequilibrium Green's function. The rotating magnetic field rotates with the angular frequency ωr around the z-axis with the tilt angle ?, and the time-oscillating magnetic field is located in the z-axis with the angular frequency ω. Different behaviors have been shown in the presence of electron-phonon interaction (EPI) which plays a significant role in the transport. The current displays asymmetric behavior as the source-drain bias eV=0, novel side peaks or shoulders can be found due to the phonon absorption and emission procedure, and the negative differential resistance becomes stronger as the parameter g increases. Furthermore, the strong EPI also destroys the quasiperiodic oscillations of current in the region μ0B1>2.5Δ. The electron transport properties are also significantly influenced by the linewidth function Γ.  相似文献   

18.
The influence of an electric field on the energy levels of the 6d2D3/2-state in the Tl I-spectrum was studied by measuring the shifts of level crossing signals relative to their magnetic field positions. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=42(2) Mc/sec · gJ/0.8, ¦β¦=0.12(1) Mc/sec/(kV/cm)2 · gJ/0.8 and A/β>0. Assuming that the main part of the energy shifts are caused by admixtures of the 7p2P-states the sign of the Stark parameterβ and —from the measured ratio A/β>0 —the sign of theA-factor should be negative. For electric field strength E?30 kV/cm the energy shifts of the 6d2D3/2state are considerably greater than the hyperfine structure splitting. Therefore the case of decoupled hyperfine structure is considered.  相似文献   

19.
The specific heat of single crystalline HoAl2 in magnetic fields up to 7.5 T has been measured for the temperature range 1.5–16 K. In addition the energy of a magnetic excitation in a magnetic field of 5 T at 4.2 K has been determined by inelastic neutron scattering. The results have been interpreted with a cubic crystalline electric field and an exchange interaction using the same parameter set B4=-0.85×10-4 meV, B6=+0.71× 10-6 meV and TC=31.5 K previously obtained by magnetization measurements.  相似文献   

20.
The dynamics of back cathode bombardment (BCB) instability in a magnetron diode (a coaxial diode in a magnetic field, BB 0zB 0) is numerically simulated. The quasi-stationary regime of electron leakage across the high magnetic field (B 0/B cr > 1.1, where B cr is the insulation critical field) is realized. An electron beam in the electrode gap is split into a series of bunches in the azimuthal direction and generates the electric field component E θ(r, θ, t), which accelerates some of the electrons. Having gained an extra energy, these electrons bombard the cathode, causing secondary electron emission. The rest of the electrons lose kinetic energy and move toward the anode. Instability is sustained if the primary emission from the cathode is low and the secondary emission coefficient k se=I se/I e, BCB is greater than unity. The results of numerical simulation are shown to agree well with experimental data. A physical model of back-bombardment instability is suggested. Collective oscillations of charged flows take place in the gap with crossed electric and magnetic fields (E × B field) when the electrons and E × B field exchange momentum and energy. The self-generation and self-organization of flows are due to secondary electron emission from the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号