首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
纪延俊  杜玉杰  王美山 《中国物理 B》2013,22(11):117103-117103
The electronic structure and optical properties of Al and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotential method.The results show that the optimal form of p-type GaN is obtained with an appropriate Al:Mg co-doping ratio rather than with only Mg doping.Al doping weakens the interaction between Ga and N,resulting in the Ga 4s states moving to a high energy region and the system band gap widening.The optical properties of the co-doped system are calculated and compared with those of undoped GaN.The dielectric function of the co-doped system is anisotropic in the low energy region.The static refractive index and reflectivity increase,and absorption coefficient decreases.This provides the theoretical foundation for the design and application of Al–Mg co-doped GaN photoelectric materials.  相似文献   

2.
<正>The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first-principles calculations.The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound.The optical properties,including complex dielectric function,absorption coefficient,refractive index,reflectivity,and loss function,and the origin of spectral peaks are analysed based on the electronic structures.The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.  相似文献   

3.
Theβ-Ga2O3films are prepared on polished Al2O3(0001)substrates by pulsed laser deposition at different oxygen partial pressures.The influence of oxygen partial pressure on crystal structure,surface morphology,thickness,optical properties,and photoluminescence properties are studied by x-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscope(SEM),spectrophotometer,and spectrofluorometer.The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure,the full width at half maximum(FWHM)and grain size increase.With the increase of oxygen pressure,the thickness of the films first increases and then decreases.The room-temperature UV-visible(UV-Vis)absorption spectra show that the bandgap of theβ-Ga2O3film increases from4.76 e V to 4.91 e V as oxygen pressure decreasing.Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm(~4.0 e V),360 nm(~3.44 e V),445 nm(~2.79 e V),and 467 nm(~2.66 e V),respectively.In addition,the total photoluminescence intensity decreases with oxygen pressure increasing,and it is found that the two UV bands are related to self-trapped holes(STHs)at O1 sites and between two O2-s sites,respectively,and the two blue bands originate from VGa2-at Ga1 tetrahedral sites.The photoluminescence mechanism of the films is also discussed.These results will lay a foundation for investigating the Ga2O3film-based electronic devices.  相似文献   

4.
0.91Pb(Zn1/3Nb2/3)O3--0.09PbTiO3 (PZN--9%PT) single crystals with different orientations are investigated by using a spectroscopic ellipsometer, and the refractive indices and the extinction coefficients are obtained. The Sellmeier dispersion equations for the refractive indices are obtained by the least square fitting, which can be used to calculate the refractive indices in a low absorption wavelength range. Average Sellmeier oscillator parameters Eo, $\lambda$o, So, and Ed are calculated by fitting with the single-term oscillator equation, which are related directly to the electronic energy band structure. The optical energy bandgaps are obtained from the absorption coefficient spectra. Our results show that the optical properties of [001] and [111] poled crystals are very similar, but quite different from those of the [011] poled crystal.  相似文献   

5.
耿欣  何大伟  王永生  赵文  周亦康  李树磊 《中国物理 B》2015,24(2):27803-027803
In order to investigate the impedance matching properties of microwave absorbers,the ternary nanocomposites of GO/PANI/Fe3O4(GPF) are prepared via a two-step method,GO/PANI composites are synthesized by dilute polymerization in the presence of aniline monomer and GO,and GO/PANI/Fe3O4 is prepared via a co-precipitation method.The obtained nanocomposites are characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR),respectively.The microwave absorbability reveals enhanced microwave absorption properties compared with GO,PANI,and GO/PANI.The maximum reflection loss of GO/PANI/Fe3O4 is up to-27 dB at 14 GHz with its thickness being 2 mm,and its absorption bandwidths exceeding-10 dB are more than 11.2 GHz with its thickness values being in the range from 1.5 mm-4 mm.It provides that GO/PANI/Fe3O4 can be used as an attractive candidate for microwave absorbers.  相似文献   

6.
<正>Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3(AlON) thin films on Si(100) substrates.The chemical compositions,crystallinity,and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),and 3-omega method,respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700℃and 1000℃.The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity.A 67%enhancement in thermal conductivity has been achieved for the samples grown at 700℃,demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.  相似文献   

7.
The electronic structures and optical properties of N-doped Zn O bulks and nanotubes are investigated using the firstprinciples density functional method. The calculated results show that the main optical parameters of Zn O bulks are isotropic(especially in the high frequency region), while Zn O nanotubes exhibit anisotropic optical properties. N doping results show that Zn O bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped Zn O bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the[001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of Zn O bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet(UV)(100 nm~ 300 nm). For each of N-doped Zn O bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of Zn O.  相似文献   

8.
<正>The crystal structures,electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory.Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method.The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping,and can be further enhanced by N+Pr codoping.The band gap change of the codoping TiO2 is more obvious than that of the single ion doping,which results in the red shift of the optical absorption edges.The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst.The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light.The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping.The experimental results accord with the calculated results.  相似文献   

9.
In the framework of effective mass approximation,we theoretically investigate the electronic structure of the Si S-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schr(o|¨)dinger-Poisson self-consistently.The linear,nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness.The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness.In addition,it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration.The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.  相似文献   

10.
Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1≤m, n4) are investigated using density functional theory. The lowest energy geometries prefer the planar arrangement of the constituent atoms with a trend to maximize the number of ionic In-O bonds. Due to the charge transfer from In to O atoms, the electrostatic repulsion occurs between the atoms with the same kind of charge. The minimization of electrostatic repulsion and the maximization of In-O bond number compete between each other and determine the location of the isometric total energy. The most stable linear In-O-In-O structure of In2O2 cluster is attributed to the reduced electrostatic repulsive energy at the expense of In-O bond number, while the lowest energy rhombus-like structure of In2O3 cluster reflects the maximized number of In-O bonds. Furthermore, the vibrational frequencies of the lowest energy clusters are calculated and compared with the available experimental results. The energy gap and the charge density distribution for clusters with varying oxygen/indium ratio are also discussed.  相似文献   

11.
赵银女 《光子学报》2014,41(10):1242-1246
β-Ga2O3是一种宽带隙半导体材料,能带宽度Eg≈5.0eV,在光学和光电子学领域有广泛的应用。用射频磁控溅射方法在Si衬底和远紫外光学石英玻璃衬底制备了本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜,用紫外 可见分光光度计、X射线衍射仪、荧光分光光度计对本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜的光学透过、光学吸收、结构和光致发光进行了测量,研究了Zn掺杂和热退火对薄膜结构和光学性质的影响。退火后的β-Ga2O3薄膜为多晶结构,与本征β-Ga2O3薄膜相比,Zn掺杂β-Ga2O3薄膜的β-Ga2O3(111)衍射峰强度变小,结晶性变差,衍射峰位从35.69°减小至35.66°。退火后的Zn掺杂β-Ga2O3薄膜的光学带隙变窄,光学透过降低,光学吸收增强,出现了近边吸收,薄膜的紫外、蓝光及绿光发射增强。表明退火后Zn掺杂β-Ga2O3薄膜中的Zn原子被激活充当受主。  相似文献   

12.
First-principles calculations for intrinsic and Zn-doped In0.25Ga0.75As are performed based on density functional theory to study the influence of Zn doping on electronic and optical properties. The band structure, density of state, Mulliken population, dielectric function, complex refractive index, absorption coefficient and reflectivity of In0.25Ga0.75As are calculated. Results show that the Fermi levels of two Zn-doped models enter into the valence bands and Zn atom is more easily to replace In atom than Ga atom. The lattice constant of In0.2344Ga0.75Zn0.0156As reduced after optimization, while that of In0.25Ga0.7344Zn0.0156As increased to the contrary. The Mulliken bond population shows that the doping Zn atoms can enlarge the strength of In–As and Ga–As polar covalent bonds. Furthermore, the calculated absorption coefficient and reflectivity are used to characterize the performance of photoemission, indicates that the photoresponses of Zn-doped models are better than that of the intrinsic.  相似文献   

13.
We study the electrical properties and emission mechanisms of Zn-doped β-Ga2O3 film grown by pulsed laser deposition through Hall effect and cathodoluminescence which consist of ultraviolet luminescence (UV), blue luminescence (BL) and green luminescence (GL) bands. The Hall effect measurements indicate that the carrier concentration increases from 7.16×1011 to 6.35×1012 cm−3 with increasing a nominal Zn content from 3 to 7 at%. The UV band at 272 nm is not attributed to Zn dopants and ascribed as radiative electron transition from conduction band to a self-trapped hole while the BL band is attributable to defect level related to Zn dopant. The BL band has two emission peaks at 415 and 455 nm, which are ascribed to the radiative electron transition from oxygen vacancy (VO) to valence band and recombination of a donor–acceptor pair (DAP) between VO donor and Zn on Ga site (ZnGa) acceptor, respectively. The GL band is attributed to the phonon replicas’ emission of the DAP. The acceptor level of ZnGa is estimated to be 0.26 eV above the valence band maximum. The transmittance and absorption spectra prove that the Zn-doped β-Ga2O3 film is a dominantly direct bandgap material. The results of Hall and cathodoluminescence measurements imply that the Zn dopant in β-Ga2O3 film will form an acceptor ZnGa to produce p-type conductivity.  相似文献   

14.
张易军  闫金良  赵刚  谢万峰 《物理学报》2011,60(3):37103-037103
采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势(USPP)法, 在广义梯度近似(GGA)下计算了本征β-Ga2O3和Si掺杂β-Ga2O3的能带结构、电子态密度、差分电荷密度和光学特性. 在蓝宝石衬底(0001)晶面上用脉冲激光沉积(PLD)法制备了本征β-Ga2O3和Si掺杂β-Ga2O3薄膜, 测量了其吸收光谱和反射光 关键词: 第一性原理 超软赝势 密度泛函理论 2O3')" href="#">Si掺杂β-Ga2O3  相似文献   

15.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   

16.
The electronic structure and optical properties of N-doped β-Ga2O3 and N-Zn co-doped β-Ga2O3 are investigated by the first-principles calculation. In the N-Zn co-doped β-Ga2O3 system, the lattice parameters of a, b, c, V decrease and the formation energy of N-Zn co-doped β-Ga2O3 is smaller in comparison with N-doped β-Ga2O3. There are two shallower acceptor impurity levels in N-Zn co-doped β-Ga2O3. Comparing with N-doped β-Ga2O3, the major absorption peak is red-shifted and the impurity absorption edge is blue-shifted for N-Zn co-doped β-Ga2O3. The results show that the N-Zn co-doped β-Ga2O3 is found to be a better method to push p-type conductivity in β-Ga2O3.  相似文献   

17.
张丽英  闫金良  张易军  李厅 《中国物理 B》2012,21(6):67102-067102
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.  相似文献   

18.
从对Cu的取代看YBa2Cu3O7-y中Cu-O平面和Cu—O链的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
赵勇  张酣  张涛  张其瑞 《物理学报》1989,38(4):607-613
通过测量YBa2Cu3-xMxO7-y(M=Zn,Ni,x=0,0.025,0.05,0.075,0.1,0.15,0.2,0.3)系列样品的晶体结构、正常态电子输运性质、超导电性以及O含量,给出了Zn择优取代Cu(2)的更直接证据;同时,观察到掺Zn系统中的由正交相Ⅰ到正交相Ⅱ的结构相变以及Ni取代Cu带来的电子局域化效应。研究结果表明,具有正二价态的Zn对Cu(2)具有择优取代性,而具有正二价和正三价的Ni并不具有明显的择优取代。对Cu(2)的取代引起超导临界温度的显著变化,但对正常态电子输运性质的影响不明显;对Cu(1)的取代更显著地影响了晶体结构和正常态电子输运性质,同时对Tc产生抑制,我们认为,YBa2Cu307中的高温超导电性以及正常态输运性质是由CU-O平面和Cu-0链共同承担,而Cu-O平面和Cu-0链之间的耦合强度决定着该系统的超导电性的强弱。 关键词:  相似文献   

19.
Spectra for the filled and unfilled electronic states of the (Bi,Pb)-2223 high temperature superconductor were recorded by photoemission and fluorescence X-ray absorption in the entire doping range achieved by substitution of bivalent Ca ions with trivalent Y. In photoemission these samples show diminishing spectral intensity near E F and at 1.5 eV binding energy with increasing Y content. Parallel to the observations for the filled states the O1s X-ray absorption spectra show a decrease and a shift to higher energies of the empty states just above EF The spectral structures are identified in the framework of the Hubbard model.  相似文献   

20.
In this paper we report on facile solution combustion synthesis of erbium doped β-Ga2O3 with urea as fuel. The product was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties of β-Ga2O3:Er are studied with excitation in near infrared (Nd:YAG laser at 1064 nm) and visible (argon laser at 514.5 nm). A strong NIR emission of Er3+ in the window of minimal optical loss in silica based optical fibers, due to the 4I13/24I15/2 transition at 1.55 μm has been observed. Codoping with Yb3+ significantly increases the intensity of that important emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号