首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have demonstrated that the compositional modification of the Ca/Ag films is principally responsible for a high transmittance (over 70% in the visible range) and low sheet resistance (10-12 Ω/sq). X-ray photoelectron spectroscopy (XPS) sputter depth profiling of Ca/Ag structure reveals the presence of Ca(OH)2 and Ca metal. A chemical model of the Ca/Ag cathode is proposed. Using transparent ITO anode and Ca (10 nm)/Ag (10 nm) cathode, efficient white organic light-emitting devices (WOLEDs) emitting from both sides have been fabricated. Brightness of 3813 cd/m2 and Commission Internationale de l’Eclairage (CIE) coordinates (0.36, 0.34) at 10 V through ITO anode and values of 1216 cd/m2 and (0.33, 0.30) through Ca/Ag cathode are reported. A low turn-on voltage of 5.5 V is measured.  相似文献   

2.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

3.
We have studied three kinds of transparent low-work-function Yb-based cathodes for the top-emitting organic light emitting devices (TEOLEDs) with a structure of ITO/NPB/Alq3/cathodes and compared them with each other. For the Yb/Au cathodes, a series of Yb layers with various thicknesses have been tested and it is found that the Yb layer with a thickness of 4 nm is the optimum one. The Yb:Au (19 nm) and Yb:Ag (19 nm) co-evaporation cathodes possess very high transmittance but relative poor electron injection; whilst the Yb (4 nm)/Au (15 nm) cathode possess a little lower transmittance but much improved electron injection and the TEOLED with this cathode has the highest power efficiency among the TEOLEDs with the three kinds of Yb-based cathodes mentioned above.  相似文献   

4.
Al/Ni bilayer cathode was used to improve the electroluminescent (EL) efficiency and stability in N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′ biphenyl 4,4′-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3)-based organic light-emitting diodes. The device with LiF/Al/Ni cathode achieved a maximum power efficiency of 2.8 lm/W at current density of 1.2 mA/cm2, which is 1.4 times the efficiency of device with the state-of-the-art LiF/Al cathode. Importantly, the device stability was significantly enhanced due to the utilization of LiF/Al/Ni cathode. The lifetime at 30% decay in luminance for LiF/Al/Ni cathode was extrapolated to 400 h at an initial luminance of 100 cd/m2, which is 10 times better than the LiF/Al cathode.  相似文献   

5.
A new compound with intramolecular charge transfer (ICT) property—5,6-Bis-[4-(naphthalene-1-yl-phenyl-amino)-phenyl]-pyrazine-2,3-dicarbonitrile(BNPPDC) was synthesized. The new compound was strongly fluorescent in non-polar and moderately polar solvents, as well as in thin solid film. The absorption and emission maxima shifted to longer wavelength with increasing solvent polarity. The fluorescence quantum yield also increased with increasing solvent polarity from non-polar to moderately polar solvents, then decreased with further increase of solvent polarity. This indicates both “positive” and “negative” solvatokinetic effects co-existed. Using this material as hole-transporting emitter and host emitter, we fabricated two electroluminescent (EL) devices with structures of A (ITO/BNPPDC (45 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm) and B (ITO/N,N′-diphenyl-N,N′-bis-(3-methylphenyl) (1,1′-diphenyl)4,4′-diamine (TPD) (50 nm)/BNPPDC (20 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm). The devices showed green-yellow EL emission with good efficiency and high brightness. For example, the device A exhibited a high brightness of 17400 cd/m2 at a driving voltage of 11 V and a very low turn-on voltage (2.9 V), as well as a maximum luminous efficiency 3.61 cd/A. The device B showed a similar performance with a high brightness of 12650 cd/m2 at a driving voltage of 13 V and a maximum luminous efficiency 3.62 cd/A. In addition, the EL devices using BNPPDC as a host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as a dopant (configuration: ITO/TPD (60 nm)/BNPPDC:DCJTB (2%) (30 nm)/TPBI (35 nm)/Mg:Ag (200 nm)) showed a good performance with a brightness of 150 cd/m2 at 4.5 V, a maximum brightness of 12600 cd/m2 at 11.5 V, and a maximum luminous efficiency of 3.30 cd/A.  相似文献   

6.
Transparent indium-tin-oxide (ITO) anode surface was modified using O3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N,N′-Diphenyl-N,N′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.  相似文献   

7.
Efficiency and brightness and carriers injection have been obviously improved by using bathocuproine (BCP) as a buffer-layer in organic light-emitting diodes. Compared with the bufferless device, the quantum efficiency of device ITO/NPB (10 nm)/Alq3 (10 nm)/BCP (2.4 nm)/Al has increased four times at the same current density (32 mA/cm2). Moreover, the buffer layer has changed the current-voltage properties and the turn-on voltage has obviously decreased. Considering BCP and Al3+ can react conveniently under room temperature, we suggest that a complex cathode structure of BCP/[(Al)x(BCP)y]3x+/Al has formed under electric field and the new cation [(Al)x(BCP)y]3x+ at the BCP/Al interface has improved the internal electric field and then enhanced the electrons injection. we conclude that: for a very thin (<1 nm) BCP buffer layer, improving electron injection will principally responsible to the improvement of the performance of the OLEDs; for a thicker BCP layer, there will be a synthetic function of BCP: improving electron injection, hole-blocking and electron-transporting.  相似文献   

8.
Triruthenium carbonyl clusters {[Ru3(Br)(CO)11] (denoted as Ru-1), [Ru3(μ2-Br)(CO)10] (denoted as Ru-2), and [Ru3(μ3-NPh)(Br)(CO)9] (denoted as Ru-3)} were synthesized on di(3-aminopropyl)viologen (DAPV)/indium tin oxide (ITO) using a surface reaction in a ruthenium (III) carbonyl [Ru3(CO)12] solution, and were applied to photoelectrochemical cells (PECs) at the molecular level. The formation of DAPV on ITO was realized in the form of self-assembled monolayers. Ru3(CO)12 then easily reacted with the Br of DAPV, and a mixture of Ru-1 and Ru-2 was formed on DAPV/ITO. Furthermore, Ru-3 was successfully anchored on DAPV/ITO by adding nitrosobenzene in order to react with Ru-2 on DAPV/ITO. The photocurrents of (Ru-1 and Ru-2)/DAPV/ITO and Ru-3/DAPV/ITO in PECs at the molecular level were 6.3 nA cm−2 and 8.6 nA cm−2, respectively. The quantum yield of Ru-3/DAPV/ITO was ∼0.8%. Time-resolved photoluminescence spectroscopy and emission spectroscopy were recorded to bring out the photoinduced charge transfer process from ruthenium clusters to DAPV.  相似文献   

9.
Schiff bases N,N′-o-phenylenebis (salicylideneimine) (H2L1), N,N′-p-phenylenebis (salicylideneimine) (H2L2) and their corresponding boron complexes (BF2)2L1, (BF2)2L2 were synthesized, respectively. The two boron complexes have been characterized by 1H NMR, mass spectrometry and elemental analysis, while the luminescent properties of them were investigated with UV-VIS spectroscopy and photoluminescence spectroscopy. Then the three-layer devices [ITO/NPB (60 nm)/(BF2)2L1 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device I) and [ITO/NPB (60 nm)/(BF2)2L2 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device II) were fabricated by vacuum deposition. These two devices both exhibited blue green emission at 500 nm, but showed different luminances and efficiencies.  相似文献   

10.
Single-crystal Ni films were made by the molecular beam epitaxy (MBE) method on Si(1 0 0) and Si(1 1 0) substrates, respectively, with an 100 Å thick Ag buffer layer. The growth temperature TS was 270 °C, and the film thickness t was 500 Å. From reflection high-energy electron diffraction (RHEED) patterns, the crystalline symmetries of the two films are clear and as expected. Intrinsic coercivities, HC(1 0 0) and HC(1 1 0), are plotted as a function of the angle of rotation ? around the crystal axes [1 0 0] and [1 1 0], respectively. The results show that both HC(1 0 0) and HC(1 1 0) exhibit mixed features of the crystalline (KC) and the induced uniaxial magnetic (Ku) anisotropies. Ku is the magneto-elastic energy, due to lattice mismatch at the Ni/Ag interface. Moreover, the crystalline anisotropy fields, HK(1 0 0) and HK(1 1 0), and the induced anisotropy filed, Hu, can be calculated as a function of ?, respectively. Then, each HC curve is fitted by the equation: HC = Ho + HK + Hu, where Ho is the isotropic pinning field. Meanwhile, domain structures were examined by the Bitter method, using Ferrofluid 707. On the Ni(1 0 0) film, we observed the charged cross-tie walls, and on the Ni(1 1 0) film, the un-charged Bloch walls.  相似文献   

11.
Two novel complexes of Sm(III) and Dy(III) with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands were synthesized and their structure and luminescence properties were characterized. The complexes of [Ln(ODA)(phen)·4H2O]Cl·5H2O [Ln=Sm and Dy] crystallize in the monoclinic space group P21/n with Sm: a=12.3401(14) Å, b=16.821(2), c=12.6847(11) Å, β=107.939(10)°, V=2505.0(5) Å3, Z=4 and ρ=1.841 mg/m3, and with Dy: a=12.289(7) Å, b=16.805(6) Å, c=12.705(4) Å, β=108.144(18)°, V=2493.4(19) Å3, Z=4 and ρ=1.786 mg/m3. The complexes of [Sm(ODA)(phen)·4H2O]+ and [Dy(ODA)(phen)·4H2O]+ excited by UV light produce orange red and lightly white emissions, respectively, via the nonradiative energy transfer from phen to the metals. The quantum yield of the sensitized luminescence of [Dy(ODA)(phen)·4H2O]+ (Q=19%) is much greater than that of [Sm(ODA)(phen)·4H2O]+ (Q=1.4%). The luminescence decay times of the complexes were in a few microsecond range and independent of temperature.  相似文献   

12.
White organic light-emitting devices (WOLEDs) with Mg:Ag/Alq3/Alq3:DCJTB/Alq3/DPVBi/α-NPD/ITO and Mg:Ag/Alq3/DPVBi:DCJTB/Alq3/DPVBi/α-NPD/ITO structures were fabricated with three primary-color emitters of red, green, and blue by using organic molecular-beam deposition. Electroluminescence spectra showed that the dominant white peak for the WOLEDs fabricated with host red-luminescence Alq3 and DPVBi layers did not change regardless of variations in the current. The Commission Inernationale de l'Eclairage (CIE) chromaticity coordinates for the two WOLEDs were stable, and the WOLEDs at 40 mA/cm2 with luminances of 690 and 710 cd/cm2 showed an optimum white CIE chromaticity of (0.33, 0.33). While the luminance yield of the WOLED fabricated with a host red-luminescent Alq3 emitting layer below 30 mA/cm3 was larger than that of the WOLED fabricated with a DPVBi layer, above 30 mA/cm2, the luminance yield of the WOLED fabricated with the DPVBi layer was higher than that of the WOLED with the Alq3 layer and became more stable with increasing current density. These results indicate that WOLEDs fabricated with a host red-luminescence DPVBi layer without any quenching behavior hold promise for potential applications in backlight sources in full-color displays.  相似文献   

13.
Efficient white electroluminescence has been obtained by using an electroluminescent layer comprising of a blue fluorescent bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(hpb)2] doped with red phosphorescent bis (2-(2′-benzothienyl) pyridinato-N,C3′)iridium(acetylacetonate) [Ir(btp)2acac] molecules. The color coordinates of the white emission spectrum was controlled by optimizing the concentration of red dopant in the blue fluorescent emissive layer. Organic light-emitting diodes were fabricated in the configuration ITO/α-NPD/Zn(hpb)2:0.01 wt%Ir(btp)2acac/BCP/Alq3/LiF/Al. The J-V-L characteristic of the device shows a turn on voltage of 5 V. The electroluminescence (EL) spectra of the device cover a wide range of visible region of the electromagnetic spectrum with three peaks around 450, 485 and 610 nm. A maximum white luminance of 3500 cd/m2 with CIE coordinates of (x, y=0.34, 0.27) at 15 V has been achieved. The maximum current efficiency and power efficiency of the device was 5.2 cd/A and 1.43 lm/W respectively at 11.5 V.  相似文献   

14.
J.Y. Lee 《Optics Communications》2009,282(12):2362-3085
Sn doped In2O3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10−5 Ω cm.However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10−4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.  相似文献   

15.
Youichi Ohno 《Surface science》2006,600(21):4829-4837
This paper presents the scanning tunneling microscopy (STM) results of the misfit-layer compound (PbS)1.12VS2, which is constructed of alternately stacking of PbS (Q) and VS2 (H) layers. Temperature dependent resistivity measurements show a semiconducting behavior with small activation energies. Unlike the metallic 1Q/1H type of compounds we have succeeded to take both the STM images of a Q layer and a H layer, because electron tunneling from the underlying H layer is suppressed when intermediate positive bias voltage (Vb) is applied to a tip. At Vb = 0.15 V the image shows pseudo-tetragonal arrays of bright spots, although it is obscure with decreasing bias voltage and disappears at less than 10 mV. A modulation structure is found on the H layer of a stepped surface on which surface atoms are undulated in a period being twice the V-V interatomic distance in the [1 0]H or the [1 1]H direction.  相似文献   

16.
Ag(TCNQ) and Cu(TCNQ) nanowires were synthesized via vapor-transport reaction method at a low temperature of 100 °C. Field emission properties of the as-obtained nanowires on ITO glass substrates were studied. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires were 9.7 and 7.6 V/μm (with emission current of 10 μA/cm2), respectively. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires decreased to 6 and 2.2 V/μm, and the emission current densities increased by two orders at a field of 8 V/μm with a homogeneous-like metal (e.g. Cu for Cu(TCNQ)) buffer layer to the substrate. The improved field emission is due to the better conduct in the nanowires/substrate interface and higher internal conductance of the nanowires. The patterned field emission cathode was then fabricated by localized growing M-TCNQ nanowires onto mask-deposited metal film buffer layer. The emission luminance was measured to be 810 cd/m2 at a field of 8.5 V/μm.  相似文献   

17.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

18.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

19.
Q. Liang 《Applied Surface Science》2006,252(13):4628-4631
We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (Hc) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, Hc, and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced Hc and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence.  相似文献   

20.
The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm−1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals ν9(e′), ν10(e′), ν12(e′), , as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm−1: B0 = 0.28755833(14), DJ = 1.1313(5) × 10−7, DJK = −1.2633(7) × 10−7, HJ = 0.72(4) × 10−13, HJK = −2.24(13) × 10−13, and HKJ = 2.25(15) × 10−13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号