首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1感光溶胶-凝胶法制备光波导研究   总被引:3,自引:3,他引:0  
彭新玲  赵高扬 《光子学报》2008,37(6):1098-1102
采用溶胶-凝胶技术与化学修饰相结合的方法,制备了具有紫外感光特性的SiO2/Al2O3溶胶及其凝胶薄膜,并通过在溶胶中加入聚乙二醇使其形成有机-无机复合结构,经一次提拉制膜就可获得18 μm厚的感光性凝胶薄膜.利用薄膜自身的感光性,使紫外光通过掩模照射薄膜,再经过溶洗和200℃、1 h的热处理,就可获得厚度达到15 μm、线宽约为100 μm的波导阵列.对这种波导薄膜的折射率和的透射率进行了研究.  相似文献   

2.
潘永强  白涛  田玉珺 《应用光学》2013,34(1):128-132
 采用电子束热蒸发技术在不同工艺下制备了TiO2薄膜,利用椭偏仪和分光光度计研究了紫外光辐照后薄膜光学特性的变化。实验结果表明:不同工艺下制备的TiO2薄膜经相同条件的紫外光辐照后,其折射率均有所下降,折射率的变化量随着沉积速率上升、基底温度上升、工作真空度下降分别有增大的趋势。薄膜的透射率在紫外光辐照后有一定下降。相同工艺条件下制备的TiO2薄膜,其折射率随着辐照时间的增加,先迅速降低,随后又有所增加,但均低于辐照前薄膜的折射率。  相似文献   

3.
In this work, ZnO thin films with different thickness were prepared by sol-gel method on glass substrates and the structural and optical properties of these films were studied by X-ray diffractometer, atomic force microscope, UV-visible spectrophotometer, ellipsometer and fluorophotometer, respectively. The structural analyses show that all the samples have a wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. The growth process of highly c-axis oriented ZnO thin films derived from sol-gel method is a self-template process. With the increase of film thickness, the structural disorder decreases and the crystalline quality of the films is gradually improved. A transition of crystal growth mode from vertical growth to lateral growth is observed and the transition point is found between 270 and 360 nm thickness. The optical analyses show that with the increase of film thickness, both the refractive index and ultraviolet emission intensity are improved. However, the transmittance in the visible range is hardly influenced by the film thickness, and the averages are all above 80%.  相似文献   

4.
It is known that deep ultraviolet (UV) radiation induces a refractive index increase in the surface layer of polymethylmethacrylate (PMMA) samples. This effect can be used for the fabrication of integrated optical waveguides. PMMA is of considerable interest for bio and chemical sensing applications because it is biocompatible and can be micromachined by several methods, e.g. structuring by photolithography, ablation and hot embossing. In the presented work direct UV irradiation of a common PMMA substrate by a krypton fluoride excimer laser beam through a contact mask has been used to write integrated optical Mach-Zehnder interferometers (MZI). MZI are used as sensitive bio and chemical sensors. The aim was to determine contact mask design and laser irradiation parameters for fabricating single-mode MZI for the infrared region from 1.30 μm to 1.62 μm. Straight and curved waveguides have been generated and characterized to determine the optical losses. The generation of channel waveguide structures has been optimized by a two step irradiation process to minimize the lithographic writing time and optical loss. By flood exposure to UV laser radiation in the first step the optical absorption of PMMA can be increased in the irradiated region. The required refractive index profile is then achieved with a second lithographic irradiation. The spectral behaviour of an unbalanced, integrated optical MZI fabricated by this excimer laser based contact mask method is shown for the first time. Further the optical intensity at the output port of a MZI has been measured while the optical path length difference was tuned by creating a temperature difference between the two arms of the MZI.  相似文献   

5.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

6.
Ultraviolet and Fourier transform infrared (FTIR) spectroscopic experiments with thin films of polymethylmethacrylate (PMMA) are reported. During the incubation with 248 nm excimer laser light or continuous (cw) UV light sources PMMA exhibits a rapidly increasing, broad UV absorption. This is caused by the production of unsaturated species, which are detected in the infrared spectrum of irradiated PMMA films. The spectral data explain the incubation process preceding the ablation of PMMA at 248 nm. Taking advantage of the increased UV absorption, cw light incubated PMMA films can be selectively ablated by standard 308 nm excimer laser pulses.  相似文献   

7.
We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y2O3-doped ZrO2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.  相似文献   

8.
Laser irradiation at 157 nm of polymethylmethacrylate (PMMA) thin films induces major variations of polymer film thicknesses from sorption (absorption/desorption) of methanol and ethanol analytes in the gas phase as much as 400%, in comparison to the film thickness variation of the non-irradiated areas. The structural changes of irradiated areas involve scission of polymeric chains, cross-linking and formation of new bonds. In addition, 157 nm induces surface and volume morphological changes in the nano/micro domain, with different shapes, depending on the irradiation conditions. The reversibility of the sorption processes suggests that the polymer swelling has its origin at the tendency of the system to increase its volume during sorption. The internal forces from sorption are higher than the weak dipole interactions between the polymer and the analytes and they are amplified following 157 nm irradiation. A simple qualitative model explains adequately the experimental results. 157 nm laser treatment forms the basis to engineer a novel class of polymer sensor arrays with enhanced detection efficiency of liquid/gas analytes.  相似文献   

9.
The effects of laser irradiation on the surface, structure and optical properties of SnO thin films deposited on glass substrates using electron beam evaporation, are investigated. The thin film samples are irradiated using fundamental beam at 1064 nm from Q-switched Nd:YAG pulsed laser with different power densities. Structural morphology of the film is investigated using XRD patterns and AFM image. Both XRD pattern and AFM image show increase in grain size of the film with increasing laser power density. Other optical phenomena, photoluminescence emission, transmission, refractive index determination and optical band gaps calculations are also carried out at various laser power densities. Results from all these investigations reveal expansion in grain size of the crystalline SnO thin film with increasing laser power density.  相似文献   

10.
UV-absorbing silicon monoxide (SiO x , x≈1) thin films on fused silica substrates are irradiated by an ArF excimer laser (wavelength 193 nm) in the sub-ablation threshold regime. Multi-pulse irradiation of films with ∼200-nm thickness at a fluence of about 100 mJ/cm2 leads to a significant increase of the UV transmission, indicating the oxidation of SiO x to SiO2. The quality of the obtained films after this laser annealing process depends on the oxygen content of the environment. Irradiation in air at atmospheric pressure leads to the formation of sub-micron-sized oxide particles on top of the film. Structured illumination is applied either to form areas of the film with changed transmission and refractive index, or for the formation of regular particle patterns with sub-micron periods. These processes can be utilized for the fabrication of phase masks or for various types of surface functionalization.  相似文献   

11.
a-SiNx:H thin films of different stoichiometry grown by PECVD were subjected to irradiation by 100 MeV Au8+ ions with various fluences to understand the effect of stoichiometry on properties of thin films upon irradiation. Ellipsometry and UV–Vis study suggest the variation in the refractive index of thin films with fluence. The evolution of Hydrogen due to irradiation is quantified with the help of ERDA. RBS was probed to study the change in thin films' composition upon irradiation, which further helps understand the change in thin films' optical properties. Quenching of photoluminescence in the films with all stoichiometries was also observed due to ion irradiation. X-TEM images show the formation of discontinuous ion tracks of radius 2.5 nm in the film closer to silicon nitride stoichiometry. However, Si rich film does not show the clear formation of tracks. Results are explained in the framework of the Thermal spike mechanism of ion-solid interaction.  相似文献   

12.
 为了认识SiO2薄膜在激光辐照下的变化,本文以K9玻璃为基底,采用电子束热蒸发方法制备了SiO2薄膜,并将此组在相同实验条件下制备的薄膜加以不同能量的激光辐照,研究在激光辐照前后样片的透射率、折射率、消光系数、膜厚、表面形貌及激光损伤阈值(LIDT)的变化。结果表明,样片膜厚随激光能量的增加而减小,辐照激光能改善薄膜表面形貌,并使样片LIDT值提高,最终能使样片的LIDT值从16.96 J/cm2提高至18.8 J/cm2。  相似文献   

13.
采用电子束热蒸发技术制备了ZnSe薄膜,研究了532 nm波长的不同能量(2.0 mJ、2.5 mJ、3.0 mJ)、不同脉冲数(3、10、15)激光诱导前后,ZnSe薄膜的透射率、折射率、消光系数、损伤阈值(LIDT)的变迁。研究结果显示,在能量为2.0 mJ激光辐照后,ZnSe薄膜折射率提高,透射率下降。相比较能量为2.5 mJ、3.0 mJ激光辐照,在能量为2.0 mJ激光辐照后折射率提高最明显,由2.489 4提高到2.501 6。薄膜损伤阈值从0.99 J/cm2提高到1.39 J/cm2(10脉冲辐照);薄膜的损伤经过了无损伤到严重损伤突变的损伤演变过程。采用原子力显微镜对预处理后薄膜表面粗糙度进行检测,发现激光预处理后的薄膜表面粗糙度Ra有所下降,从0.563 nm降低到0.490 nm(15脉冲激光辐照)。  相似文献   

14.
Poly(methyl methacrylate) (PMMA) thin films of various tacticity and thickness were bombarded at grazing angles by 20 MeV Au ions at different temperatures. The shape of the tracks was investigated by scanning force microscopy (SFM) after annealing for various time at different temperatures and constant quenching rate. The thickness dependent glass transition temperature, T(g)(h), was estimated from the temperature of relaxation of ion-caused nanodeformations in the films. T(g)(h) obtained from the thermal healing of the holes and hillocks is found in good agreement with the one determined by variable temperature ellipsometry for PMMA film thickness of 80 nm and corresponds to the T(g) of each bulk PMMA stereoisomer. Below this thickness, some significant divergences are observed between the T(g) measured by the two techniques. We propose that the healing of ion crater hillock and the kink in the thermal expansion arise from the different nature of chains motions which are perturbed to different extents according to the main polymer chain preferential orientation in the thin film. This can be tentatively interpreted by a so-called "anisotropic" character of the glass transition.  相似文献   

15.
With 800-nm, 120-fs laser pulses, optical nonlinearity has been studied in a series of thin films containing poly(methyl methacrylate) (PMMA), filled with surfactant acetylacetone (Acac) capped TiO2 nanoparticles, which were synthesized by a simple in situ sol-gel/polymerization process, assisted by spin coating and multi-step baking. The resulting nanohybrid thin films have highly optical transparency and demonstrate a unique nonlinear optical (NLO) response. The highest nonlinear refractive index (n2) is observed up to 6.55 × 10−2 cm2 GW−1 in the nanohybrid thin film of 60 wt% Ti(OBu)4 in PMMA, with a negligible two-photon absorption (TPA), as confirmed by the Z-scan technique. The titanium precursor loading combined with the nature of the capping molecules are used to influence the ability of nanoparticles to nonlinear optical response. Indeed, the ligands at the nanoparticles’ surface can not only control the extent of the interaction between the organic molecules and the embedded nanoparticles but also influence the optical nonlinearities of nanoparticles.  相似文献   

16.
Tin sulfide thin films have been grown on glass substrates by chemical bath deposition technique (CBD) at room temperature and irradiated with UV light source of wavelength 355 nm. The effect of UV illumination on the physical properties of the films was compared with that of the as-prepared film. Though the thickness of the films was unaltered after illumination, the structural, optical and electrical properties changed considerably. Structural studies showed the polycrystalline nature of the UV-illuminated sample, whereas the as-prepared film was mono crystalline. Both films were orthorhombic structure with Sn2S3 phase. The optical properties of the films were systematically studied using the optical absorbance and reflection spectra. Studies on the reflection spectra showed higher reflectance in visible and infrared region for the UV-illuminated films and lower reflectance in the infrared region for the as-prepared one. The variation of the refractive index of the samples was also analyzed. The optical absorption coefficient and the optical band gap energy of the films were evaluated. The irradiated film exhibited lower band gap of 1.74 eV than the value of as-prepared film, i.e., 1.77 eV. The measured resistivity of the tin sulfide thin films was found to be of the order of 108 and 10Ωcm for UV-illuminated and as-prepared films, respectively. The SEM images showed the presence of worm-like nanostructures with almost similar appearance in both the films.  相似文献   

17.
Results of computer simulation of reflective properties of the oxide film-metal system in the process of oxidation in the air environment are presented. The complex refractive indices for oxide film and metal were used as the initial data. Thin films (the thickness is comparable with the wavelength of incident radiation) and thick films (thickness is much larger than the wavelength of incident radiation) are considered. The parameter characterizing the cyclic character of system reflectivity during the growth of film thickness was derived for the thin film. It is shown that the cyclic parameter does not depend on optical properties of a metal substrate. In the air environment, this parameter is determined by a complex refractive index of the film, its thickness, and direction of incident radiation. Relationships for the estimate of system reflectivity in the process of oxide film growth are presented for the thick film.  相似文献   

18.
ZnO thin films are prepared on glass substrates by filtered cathode vacuum arc (FCVA) deposition technique. A new method is demonstrated to extract the refractive index, thickness and optical band gap of ZnO thin films from the transmission spectrum alone. The refractive index is calculated from the extremes of the interference fingers. The transmission spectrum is divided into two terms, non-interference term and interference effect term. The thickness of thin films is calculated by simulating the interference term, and the non-interference term is used to calculate optical band gap with the gained thickness. The results are compared with measurements by using an ellipsometry and a scanning electron microscope.  相似文献   

19.
为了考察基底温度对氧化铝薄膜折射率以及沉积厚度的影响情况,在不同基底温度环境下,通过离子辅助电子束蒸发方式,在玻璃基底上制备了同一Tooling因子条件下所监测到相同厚度的Al2O3薄膜,利用分光光度计测量光谱透过率,依据光学薄膜相关理论,计算了基底温度在25℃~300℃范围内获得的膜层实际物理厚度为275.611 nm~348.447 nm,以及膜层折射率的变化。通过对实验结果的数值计算和曲线模拟,给出了基底温度对于薄膜的折射率和实际厚度的影响情况。  相似文献   

20.
TiO2 thin films of different thickness were prepared by the Electron Beam Evaporation (EBE) method on crystal silicon. A variable angle spectroscopic ellipsometer (VASE) was used to determine the optical constants and thickness of the investigated films in the spectral range from 300 to 800 nm at incident angles of 60°, 70°, and 75°, respectively. The whole spectra have been fitted by Forouhi–Bloomer (FB) model, whose best-fit parameters reveal that both electron lifetime and band gap of TiO2 thin film have positive correlation to the film thickness. The refractive indices of TiO2 thin film increase monotonically with an increase in film thickness in the investigated spectral range. The refractive index spectra of TiO2 thin films have maxima at around 320 nm and the maxima exhibit a marginally blue-shift from 327.9 to 310.0 nm with an increase in film thickness. The evolution of structural disorder in the TiO2 thin film growth can be used to explain these phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号