首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 210 毫秒
1.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

2.
Perovskite manganite La0.9Ba0.1MnO3(LBMO) films were deposited on (0 0 1)-oriented single crystal yttria-stabilized zirconia (YSZ) substrate by 90° off-axis radio frequency magnetron sputtering. The film thickness ranged from 10 nm to 100 nm. Grazing incidence X-ray diffraction technique and high resolution X-ray diffraction were applied to characterize the structure of LBMO films. The LBMO film mainly consisted of (0 0 1)-orientated grain as well as weakly textured (1 1 0)-orientated grain. The results indicated that an amorphous layer with thickness of about 4 nm was formed at the LBMO/YSZ interface. The strain in LBMO film was small and averaged to be about -0.14%. The strain in the film was not lattice mismatch-induced strain but residual strain due to the difference in thermal expansion coefficient between film and substrate.  相似文献   

3.
Second-order optical susceptibilities were established in the optically poled erbium doped tellurite glasses near the melting temperature. The non-linear optical susceptibility was formed by bicolor coherent optical treatment performed by two coherent laser beams originated from 50 ps Nd-YAG laser (λ = 1.32 μm) exciting the high pressure hydrogen laser cell emitting at 1907 nm. The non-centrosymmetric grating of the medium was created by coherent superposition of the fundamental laser illumination at 1907 nm and the doubled frequency one at 953.5 nm. The maximally all-optically poled SHG occurs for 2% doped Er2O3 (in weighting units) TeO2-GeO2-PbO glass. It was found that the photoinduced SHG demonstrates a saturation during the photo-treatment of 9-10 min using the two beams polarized at angle about 45° between them. During the coherent bicolor optical treatment it was achieved the value of second-order susceptibility up to 3.6 pm/V at 1907 nm. The optimal ratio between the fundamental beam with power density about 1.1 GW/cm2 and writing doubled frequency seeding beam about 0.015 GW/cm2 corresponds to the maximal of photoinduced SHG. For glasses with lower concentration of Er2O3, the relaxation of the second-order optical susceptibility is substantially longer and achieves SHG value that corresponds to 80% of the maximal ones. It is necessary to emphasize that efficient optically-poled grating exists only within the narrow temperature range near the glassing temperature. Possible physical mechanisms of the phenomenon observed are discussed. Generally the used glasses possess better parameters than early investigated germinate glasses.  相似文献   

4.
OH doped and Bi-rich Bi4Ge3O12 (BGO) single crystals were grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, and the emission spectra in visible and near infrared region (NIR) were measured at room temperature. The emission spectrum of Bi-rich BGO has extra peaks at 385, 367 and 357 nm, Bi-rich BGO after annealing in Ar at 500 °C for 5 h shows a significant emission band peaking around 1170 nm under 808 nm laser diodes (LDs) excitation, and OH doped BGO shows a noticeable emission band centered at about 1346 nm under 980 nm LDs excitation. A brief discussion is presented.  相似文献   

5.
Nickel thin films were deposited on glass substrates at different N2 gas contents using a dc triode sputtering deposition system. Triode configuration was used to deposit nanostructured thin films with preferred orientation at lower gas pressure and at lower substrate temperature compared to the dc diode sputtering system. A gradual evolution in the composition of the films from Ni, Ni(N), to Ni3N was found by X-ray diffraction analysis. The preferred growth orientation of the nanostructured Ni films changed from (1 1 1) to (1 0 0) for 9% N2 at 100 °C. Ni3N films were formed at 23% N2 with a particle size of about 65 nm, while for 0% and 9% of nitrogen, the particles sizes were 60 nm, and 37 nm, respectively, as obtained by atomic force microscopy. Magnetic force microscopy imaging showed that the local magnetic structure changed from disordered stripe domains of about 200 nm for Ni and Ni(N) to a structure without a magnetic contrast, indicating the paramagnetic state of this material, which confirmed the structural transformation from Ni to Ni3N.  相似文献   

6.
7.
Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2 nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 °C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications.  相似文献   

8.
This paper investigates structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni58Fe12Zr10Hf10B10 powders prepared by high energy milling. Ball milling of Ni, Fe, Zr, Hf and B leads to alloying of the element powders at 120 h. The results show that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. The magnetic measurements reveal that the coercivity and the saturation magnetization reach about 20 Oe and 30 emu/g at 190 h and become approximately 5 Oe and 40 emu/g after a suitable heat treatment, respectively.  相似文献   

9.
We performed a systematic study on the exchange bias in (1 1 0)-orientated Bi0.9La0.1FeO3/La0.5Ca0.5MnO3 (BLFO/LCMO) heterostructure with a fixed BLFO film thickness of 600 nm and different LCMO layers ranging from t=0 to 30 nm. The LCMO is found to be weakly ferromagnetic, with the Curie temperature descending from ∼225 K to 0 as the layer thickness decreases from 30 nm to 3 nm. The main magnetic contributions come from the BLFO film, and the areal magnetization ratio is 1:0.07 for t=5 nm and 1:0.82 for t=30 nm for BLFO to LCMO at the temperature of 5 K. Further experiments show the presence of significant exchange bias, and it is, at the temperature of 10 K, ∼40 Oe for t=0 and ∼260 Oe for t=30 nm. The exchange bias reduces dramatically upon warming and disappears above the blocking temperature of the spin-glasslike behavior observed in the samples. The possible origin for exchange bias is discussed.  相似文献   

10.
We have observed a several times enhancement of the optical second harmonic generation in newly synthesized Europium doped PbO-Bi2O3-Ga2O3-BaO glasses for the fundamental wavelength 1320 nm during optical treatment by coherent fundamental and doubled frequency beams with a pulse duration about 15 ns. We have found that the maximal optical second harmonic generation was achieved for the Eu content of about 1.4% at fundamental beam average power equal to about 3 GW/cm2 , temperature of about 300 K and intensity ratio between the fundamental and doubled frequency beams of about 9. Frequency repetition of the optical pulses was equal to about 10 Hz. It was shown that doping by other rare earth ions, particularly by Dysprosium does not give a sufficient contribution to the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号