首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The optical bistability (OB) and multi-stability (OM) behavior in a dielectric slab medium doped with semiconductor quantum well nanostructure has been discussed by employing the spin coherence effect. It is shown that, by changing the relative phase of applied fields the bistable behavior switches from OB to OM or vice versa in a dielectric medium. The effect of the frequency detuning of laser fields on the OB and OM behavior are also discussed in this paper.  相似文献   

2.
We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level Y-type atomic system. It is found that the optical bistability can strongly be affected by intensity and frequency detuning of coupling and probe fields. The effect of spontaneously generated coherence on phase control of the OB and OM is then discussed. It has also been shown that the optical bistability can be switched to optical multi-stability just by the quantum interference mechanism and relative phase of applied fields.  相似文献   

3.
Optical bistability (OB) and optical multi-stability (OM) of a four-level Λ-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on OB and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.  相似文献   

4.
The optical bistability (OB) and optical multi-stability (OM) in a four-level quantum dot molecule are investigated. The effect of tunnel coupling and the rate of incoherent pump on OB are then discussed. It is found that the OB threshold can be controlled via tunnel coupling and the rate of incoherent pump. We demonstrate that the voltage-controlled detuning can significantly affect the behavior of OB and OM, therefore the OM converts to OB only by the rate of incoherent pump. The results obtained can be used for the development of new types of nanoelectronic devices for realizing switching process.  相似文献   

5.
We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed.  相似文献   

6.
We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al_(0.3)Ga_(0.7)As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.  相似文献   

7.
We demonstrate optical bistability (OB) in a defect slab doped V-type four-level InGaN/GaN quantum dot nanostructure in the negative refraction frequency band. It has been shown that the OB behavior of such a quantum dot nanostructure system can be controlled by the amplitude of the driving fields and a new parameter for controlling the OB behavior as thickness of the slab medium in the negative refraction band. Meanwhile, we show that the negative refraction frequency band can be controlled by tuning electric permittivity and magnetic permeability by the amplitude of the driving fields and electron concentration in the defect slab doped. Under the numerical simulations, due to the effect of quantum coherence and interference, it is possible to switch bistability by adjusting the optimal conditions in the negative refraction frequency band, which is more practical in all-optical switching or coding elements, and technology based nanoscale devices.  相似文献   

8.
We have investigated theoretically the optical bistability (OB) and optical multistability in quantum-well (QW) semiconductor heterostructures. The effect of a cw pump laser field and a control infrared pulse signal on OB is discussed. It is found that the OB threshold can be controlled by varying the strength of applied fields. It is also shown that OB can be switched to optical multistability or vice versa just using an appropriate relative phase of applied fields. This investigation may open up some new possibilities for applications in all-optical switching in quantum-well structures.  相似文献   

9.
Intensity threshold of optical bistability (OB) and optical multistability (OM) can be controlled by amplitude and phase control of microwave driven field in the two-photon resonance transitions in a parametric region. It is found that in two-photon resonance case, the weak microwave field can reduce the threshold of optical bistability and strong microwave field can lead to optical multistability. The effect of relative phase between applied fields is also discussed. It is shown that for weak and strong microwave field, intensity threshold of OB and OM can be modified. Moreover, it is found that for strong microwave field, relative phase has an essential role for switching between OB and OM or vice versa.  相似文献   

10.
We theoretically investigated a hybrid absorptive-dispersive optical bistability and multistability behaviour in a three-level V-type system using a microwave field driving a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the intensity and the frequency detuning of the coupling field as well as the intensity of the microwave field can affect the OM behaviour dramatically, which can be used to control the transition from OM to OB or vice versa without need to resort the effect of the quantum interference. The effects of the phase, the quantum interference and the atomic cooperation parameter on the OM are also studied. Our scheme may be used for building more efficient all-optical switches and logic-gate devices for optical computing and quantum information processing.  相似文献   

11.
A scheme for switching of the optical bistability (OB) and multi-stability (OM) in a dielectric slab doped with a three-level ladder-configuration n-doped semiconductor quantum well is simulated. It is shown that the bistable behavior of the system in dielectric slab can be controlled via amplitude or relative phase of applied fields. This optical system may provide some new possibilities for test the switching process.  相似文献   

12.
Matsui H  Nomura W  Yatsui T  Ohtsu M  Tabata H 《Optics letters》2011,36(19):3735-3737
We studied photoluminescence (PL) and energy-transfer dynamics in a hybrid structure comprising a Cd(0.08)Zn(0.92)O quantum well (QW) and an Ag nanostructure. The observed PL quenching was dependent on the electronic states in the QW. Quenching occurred at low temperature where excited carriers recombined radiatively because of excitonic localization, which disappeared with increasing temperature due to delocalization of excitons. Furthermore, nanostructured Ag surfaces produced local surface plasmon (LSP) absorption that was resonant with the PL peak energy of the QW emission. These results indicate that the recombination energy of excitons transfers nonradiatively to induce LSP excitation, which was revealed using time-resolved PL measurements.  相似文献   

13.
We analyze hybrid absorptive-dispersive optical bistability (OB) behavior via tunable Fano-type interference based on intersubband transitions in asymmetric double quantum wells (QWs) driven coherently by a probe laser field by means of a unidirectional ring cavity. We show that OB can be controlled efficiently by tuning the energy splitting of the two excited states (the coupling strength of the tunnelling), the Fano-type interference, and the frequency detuning. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the QW solid-state system, which is much more practical than that in atomic system because of its flexible design and the controllable interference strength.  相似文献   

14.
We study the optical bistability (OB) and optical multistability (OM) behaviors in a five-level $\Lambda $ -type parametric region atomic system by two-photon resonant transitions. We find that the intensity threshold of OB and switching from OB to OM or vice versa can be controlled via quantum interference between different two-photon transitions pathways.  相似文献   

15.
The optical bistability (OB) and multistability (OM) in an open Λ-type three-level atomic system inside a ring cavity are investigated. It is found that the ratio of atomic injections β and the exit rates r 0 from cavity evidently affects the threshold intensity of OB and OM. The effect of incoherent pumping field on the OB and OM of a medium is discussed. We show that the bistable behavior of the open system significantly differs from that in a corresponding closed system, especially with an increase in the incoherent pump rate. The intensity threshold is reduced in an open system but increases in a closed system. In addition, the dependence of OB and OM in an open system on spontaneously generated coherence, the relative phase the between probe and coupling fields, the coupling-field intensity, and the cooperation parameter are briefly discussed.  相似文献   

16.
Jing Wu  Jiahua Li 《Optics Communications》2010,283(24):5067-5073
We propose and analyze a new scheme to realize efficient weak-light amplification via phase control in a GaAs quantum well (QW) waveguide when driven coherently by two orthogonally polarized optical fields (a σ-polarized probe field and a π-polarized control field). It is shown that the amplification and absorption properties of the system are very sensitive to the relative phase between these driving fields. By choosing the relative phase appropriately, the enhanced amplification of the weak σ-polarized radiated field can be achieved in such a QW waveguide. We support our results by numerical calculation and analytical explanation. These theoretical investigations may find applications in devising the QW waveguide amplifier at room temperature.  相似文献   

17.
Model metal-semiconductor nanostructure Schottky nanocontacts were made on cleaved heterostructures containing GaAs quantum wells (QWs) of varying width and were locally probed by ballistic electron emission microscopy. The local Schottky barrier was found to increase by approximately 0.140 eV as the QW width was systematically decreased from 15 to 1 nm, due mostly to a large (approximately 0.200 eV) quantum-confinement increase to the QW conduction band. The measured barrier increase over the full 1 to 15 nm QW range was quantitatively explained when local "interface pinning" and image force lowering effects are also considered.  相似文献   

18.
The effects of optical field on the phenomenon of optical bistability(OB) are investigated in a K-type semiconductor double quantum well(SDQW) under various parametric conditions. It is shown that the OB threshold can be manipulated by increasing the intensity of coupling field. The dependence of the shift of OB hysteresis curve on probe wavelength detuning is then explored. In order to demonstrate controllability of the OB in this SDQW, we compare the OB features of three different configurations which could arise in this SDQW scheme, i.e., K-type, Y-type, and inverted Y-type systems. The controllability of this semiconductor nanostructure medium makes the presented OB scheme more valuable for applications in all-optical switches, information storage, and logic circuits of all optical information processing.  相似文献   

19.
We theoretically investigate the hybrid absorptive-dispersive optical bistability and multistability in a four-level inverted-Y quantum well system inside a unidirectional ring cavity. We find that the coupling field, the pumping field as well as the cycling field can affect the optical bistability and multistability dramatically, which can be used to manipulate efficiently the threshold intensity and the hysteresis loop. The effects of the relative phase and the electronic cooperation parameter on the OB and OM are also studied. Our study is much more practical than its atomic counterpart due to its flexible design and the wide adjustable parameters. Thus, it may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.  相似文献   

20.
The paper describes the possibility of designing matched interacting semiconductor quantum wells. It is shown that for a given eigenstate of a quantum well (QW), it is always possible to find another QW in such a way that the coupling leaves the original eigenstate of the host QW unperturbed irrespective of the strength of interaction. For rectangular QWs, the condition is met with whenever the second QW has appropriate width and depth so that phase travelled by an electron wave through it is an integral multiple of π.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号