首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
杨宇 《中国物理 B》2010,19(10):603-609
Using first-principles calculations, we systematically study the influence of Pb adatom on the adsorption and the dissociation of oxygen molecules on Pb(111) surface, to explore the effect of a point defect on the oxidation of the Pb(111) surface. We find that when an oxygen molecule is adsorbed near an adatom on the Pb surface, the molecule will be dissociated without any obvious barriers, and the dissociated O atoms bond with both the adatom and the surface Pb atoms. The adsorption energy in this situation is much larger than that on a clean Pb surface. Besides, for an adsorbed oxygen molecule on a clean Pb surface, a diffusing Pb adatom can also change its adsorption state and enlarge the adsorption energy for O, but it does not make the oxygen molecule dissociated. And in this situation, there is a molecule-like PbO2 cluster formed on the Pb surface.  相似文献   

2.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

3.
阎世英  朱正和 《中国物理 B》2008,17(12):4498-4503
The density functional theory (DFT) method (b3p86) of Gaussian 03 is used to optimize the structure of the Ni2 molecule. The result shows that the ground state for the Ni2 molecule is a 5-multiple state, symbolizing a spin polarization effect existing in the Ni2 molecule, a transition metal molecule, but no spin pollution is found because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Ni2 molecule, which is a 5-multiple state, is indicative of spin polarization effect of the Ni2 molecule, that is, there exist 4 parallel spin electrons in Ni2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Ni2 molecule is minimized. It can be concluded that the effect of parallel spin in the Ni2 molecule is larger than that of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters of the ground state and other states of the Ni2 molecule are derived. The dissociation energy De for the ground state of the Ni2 molecule is 1.835 eV, equilibrium bond length Re is 0.2243 nm, vibration frequency we is 262.35 cm^-1. Its force constants f2, f3 and f4 are 1.1901 aJ.nm^-2, -5.8723 aJ.nm^-3, and 21.2505 aJ.nm^-4 respectively. The other spectroscopic data for the ground state of the Ni2 molecule ωeχe, Be and αe are 1.6315cm 2, 0.1141 cm^-1, and 8.0145× 10^-4 cm^-1 respectively.  相似文献   

4.
Spin polarization effect for Mn2 molecule   总被引:2,自引:0,他引:2       下载免费PDF全文
阎世英  徐国亮 《中国物理》2007,16(3):686-691
The density functional theory method (DFT) (b3p86) of Gaussian 03 has been used to optimize the structure of the Mn2 molecule. The result shows that the ground state of the Mn2 molecule is an 11-multiple state, indicating a spin polarization effect in the Mn2 molecule, a transition metal element molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Mn2 molecule being of an 11-multiple state is the indicative of spin polarization effect of the Mn2 molecule among those in the transition metal elements: that is, there are 10 parallel spin electrons in a Mn2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacious orbitals so that the energy of the Mn2 molecule is minimized. It can be concluded that the effect of parallel spin in the Mn2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and other states of the Mn2 molecule are derived. The dissociation energy De for the ground state of the Mn2 molecule is 1.4477 eV, equilibrium bond length Re is 0.2506 nm, vibration frequency ωe is 211.51 cm^-1. Its force constants f2, f3, and f4 are 0.7240 aJ·nm-2, -3.35574 aJ·nm^-3, 11.4813 aJ·nm^-4 respectively. The other spectroscopic data for the ground state of the Mn2 molecule ωeχe, Be, αe are 1.5301 cm^-1, 0.0978 cm^-1, 7.7825×10^-4 cm^-1 respectively.  相似文献   

5.
The accurate dissociation energy and equilibrium geometry of the 63Π state of 7LiH molecule is calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. And the calculated results are 0.2580 eV and 0.1958 nm for the dissociation energy and equilibrium geometry, respectively. The whole potential energy curve for the 63Π state is also calculated over the internuclear separation range from about 0.10 to 0.54 nm. The results are fitted by the Murrell-Sorbie function. It is found that the Murrell-Sorbie function form, which is mainly used to fit the ground-state potential energy function, is well suitable for the excited triplet b3Π state. The vertical excitation energy from the ground state to the 63Π state is calculated to be 4.233 eV. Based on the analytic potential energy function, the harmonic frequency of 610.88 cm-1 about this state is firstly estimated. Compared with other theoretical results, this work is the most complete effort to deal with the analytic potential energy function and the harmonic frequency of this state.  相似文献   

6.
何满潮  赵健 《中国物理 B》2013,22(1):16802-016802
Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results show that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of 133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 A above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.  相似文献   

7.
徐家坤  陈海清  刘红平 《中国物理 B》2013,22(1):13204-013204
We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than 70cm-1 . The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.  相似文献   

8.
With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine's ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.  相似文献   

9.
With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine‘s ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.  相似文献   

10.
谢安东 《中国物理》2006,15(2):324-328
Density functional theory (DFT) (B3p86) has been used to optimize the structure of the molecule Ta2. The result shows that the ground state of molecule Ta2 is a 7-multiple state and its electronic configuration is ^7∑u^+, which shows the spin polarization effect for molecule Ta2 of transition metal elements for the first time. Meanwhile, spin pollution has not been found because the wavefunction of the ground state does not mix with those of higher states. So, the fact that the ground state of molecule Ta2 is a 7-multiple state indicates a spin polarization effect of molecule Ta2 of the transition metal elements, i.e. there exist 6 parallel spin electrons and the non-conjugated electrons are greatest in number. These electrons occupy different space orbitals so that the energy of molecule Ta2 is minimized. It can be concluded that the effect of parallel spin of the molecule Ta2 is larger than the effect of the conjugated molecule, which is obviously related to the effect of d-electron delocalization. In addition, the Murrell-Sorbie potential functions with parameters for the ground state ^7∑u^+ and other states of the molecule Ta2 are derived. The dissociation energy De, equilibrium bond length Re and vibration frequency we for the ground state of molecule Ta2 are 4.5513eV, 0.2433nm and 173.06cm^-1, respectively. Its force constants f2, f3 and f4 are 1.5965×10^2aJ.nm^-2, -6.4722×10^3aJ·nm^-3 and 29.4851×10^4aJ·nm^-4, respectively. Other spectroscopic data we xe, Be and αe for the ground state of Ta2 are 0.2078cm^-1, 0.0315 cm^-1 and 0.7858×10^-4 cm^-1, respectively.  相似文献   

11.
We systematically study the dissociation processes for hydrogen molecules on the Be(0001) surface. The minimum dissociation energy barrier is found to be 0.75 eV on the clean surface, and the dissociated hydrogen atoms are found to distribute universally on the Be surface. After hydrogen preadsorption, the dissociation energy barrier become 0.50 eV for molecular hydrogen on the Be surface. Our studies well describe the adsorption behaviors of hydrogen on the Be(0001) surface.  相似文献   

12.
Ab initio computational methods are used to study the relevance of van der Waals interactions in the case of a hydrogen molecule adsorption on the Ru(0001) surface. In addition to the clean surface, the effects of ruthenium adatom and vacancy on the process are studied. The adsorption characteristics are analyzed in terms of two dimensional cuts of the potential energy surface (PES). Based on the earlier studies for such systems, we mostly concentrate on the trajectories where the hydrogen molecule approaches the surface in parallel orientation. The results indicate that for a clean Ru(0001) the calculations applying the non-local van der Waals potentials yield higher barriers for the dissociation of the H2 molecule. Of the high symmetry sites on Ru(0001), the top site is found to be the most reactive one. The vacancy and ruthenium adatom sites exhibit high dissociation barriers compared with the clean surface.  相似文献   

13.
“Ab initio” RHF calculations are used to investigate the chemisorption of a H2 molecule on boron cluster surfaces. Potential energy surfaces and electron charge difference density plots are given. The results obtained indicate that the H2 molecule in certain cases is dissociated on the surface, and that the hydrogen atoms are individually bound to different boron atoms. It is also found that the chemisorbed hydrogen atoms can move almost freely in certain directions parallel to the boron surface.  相似文献   

14.
The dissociation of H_2 molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to determine the kinetics of the regeneration of the storage material. In this paper, we investigate the hydrogen adsorption and dissociation on Mg-coated B_(12)C_6N_6. The B_(12)C_6N_6 is an electron deficient fullerene, and Mg atoms can be strongly bound to this cage by donating their valance electrons to the virtual 2p orbitals of carbon in the cluster. The preferred binding sites for Mg atoms are the B_2C_2 tetragonal rings. The positive charge quantity on the Mg atom is 1.50 when a single Mg atom is coated on a B_2C_2 ring. The stable dissociation products are determined and the dissociation processes are traced. Strong orbital interaction between the hydrogen and the cluster occurs in the process of dissociation, and H_2 molecule can be easily dissociated. We present four dissociation paths, and the lowest energy barrier is only 0.11 eV, which means that the dissociation can take place at ambient temperature.  相似文献   

15.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,我们发现氢分子以Hor1的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769eV,这表明氢分子最可能以Hor1的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离( )和氢分子的键长( )分别为1.6286Å和0.9174Å. 在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778eV的活化能,而氢分子分解时的吸附能为0.8390eV,分解后两个氢原子的距离为3.1712Å. 在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

16.
Wenzhen Lai  Daiqian Xie   《Surface science》2004,550(1-3):15-20
Vibrational properties of hydrogen on the Rh(1 1 1) surface have been investigated theoretically. The potential energy surface for this system has been calculated within the density functional theory. The potential is found to be very anharmonic. The wave functions and their energies for the hydrogen motion on the potential energy surface (PES) have been calculated and assigned by using discrete variable representation. It was found that the vibrational wave function is localized at hollow site in the ground state for hydrogen on Rh(1 1 1). Higher excited states are of delocalized nature and mixed parallel and perpendicular character. Our results are in good agreement with the observed vibrational spectra of hydrogen on the Rh(1 1 1) surface.  相似文献   

17.
采用了密度泛函理论(density functional theory,DFT),在6-311++G(d,p)基组水平上使用B3LYP方法研究外电场(0-0.05a.u.)对于溴甲烷分子的键长、能隙及解离势能面的影响.结果表明:外加电场的方向和大小对于分子结构和解离势能面均有显著的影响.随着负向外电场(Br-C键方向)从0增加到0.05a.u.,C-Br键的键长先减小后增大,C-H键的键长逐渐增加,分子能隙EG逐渐减小,C-Br键的str振动频率逐渐增加而IR振动频率逐渐减小.进一步计算发现:随着正向外电场(C-Br键方向)从0增加到0.03a.u.,溴甲烷分子的势能曲线有所降低,解离势垒逐渐减小.因此,可以通过外电场来控制CH3Br分子的降解.  相似文献   

18.
氢的物理和化学吸附是氢存储的基本形式,而H2分子的解离能垒是决定可逆储氢动力学性能的重要因素.纳米团簇是研究材料储氢性能的重要物质层次,研究氢与Na-Al团簇的相互作用性质能够了解纳米尺度的Na-Al氢化物的储氢性能.本文利用密度泛函理论,计算研究了H2分子在较小的合金团簇Na2Al6上的吸附与解离性能.结果表明H2分子在Na2Al6团簇上是弱的物理吸附,但很容易发生解离.氢分子的解离能垒很低,解离可以在环境温度下发生,纳米结构的Na2Al6团簇具有良好的化学储氢性能.  相似文献   

19.
Ab initio density functional theory was used to investigate the adsorption and diffusion of a single NO molecule on the unreconstructed Pt{1 0 0}-(1 × 1) surface. To our knowledge this is the first theoretical study of the NO diffusion activation energy on the Pt{1 0 0} surface. The most stable adsorption position for NO corresponds to the bridge site with the axis of the molecule perpendicular to the surface. The bond of the NO molecule to the surface is through the N-atom. We found that there is a low adsorption energy when the NO molecule is bonded through the O-atom and the axis is perpendicular to the surface, for the three high symmetry sites investigated. NO diffusion between bridge-hollow sites, bridge-atop sites, and hollow-atop sites was also investigated. The barrier for NO diffusion is 0.41 eV, which corresponds to the energy difference between the bridge and hollow sites. This value is around 15% of the highest adsorption energy found on this surface. NO stretch frequencies are also calculated for the three high symmetry sites investigated.  相似文献   

20.
The dissociation of a gas molecule and the formation of a new chemical bond upon adsorption of this molecule on the surface of a transition metal are studied using the method of equations of motion. It is shown that both processes involve the formation of a mixed intermediate state during the adsorbate-substrate interaction. The dissociation is caused by a resonance growth of the vibrational mode, whereby the dissociation barrier is determined by the hybridization energy and by the frequency of electron transitions between molecular levels and the d electron energy levels of the metal in the mixed intermediate state. The resonance conditions for the formation of new surface structures are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号