首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Effect of composition, temperature and radiation dose in gamma irradiated acrylamide-2-acrylamido-2-methyl propane sulphonic acid (AA) copolymer has been investigated by electron spin resonance (ESR) and fourier transform infrared (FTIR) techniques. ESR spectra of gamma irradiated AA copolymer have been recorded under different conditions. The observed ESR spectra are analysed by computer simulation techniques, to separate the constituent component spectra. Magnetic parameters employed to simulate the component spectra enabled the identification of corresponding free radicals. The AA copolymer with low acrylamide content composed of macroradicals of the type ?CH2?CH?CH2? and methyl radicals (CH3) whereas the copolymer with high acryl amide content possess methyl radicals and radicals of the type ?CH2?C(CONH2)?CH2?/CH3?C?CH3. Reasons for the variation in the formation of free radicals have been explained. The observed changes in ESR spectra of irradiated AA copolymer at higher temperatures are thought to be due to the recombination of free radicals. Formation of free radicals found to be enhanced with the increase in dose of irradiation. FTIR spectra of pure and irradiated copolymers have also confirmed the previous results.  相似文献   

2.
The papers related to the theoretical background and experimental investigations by pulsed electron double resonance (PELDOR) are reviewed. The main aim of this pulsed ESR application is to study the dipole-dipole spin interaction. In PELDOR the ESR spectrum is excited by two ESE pulses at frequencyω a and additional pumping pulse atω b. Decay functionV(T) of the ESE signal, when the time intervalT between the first ESE pulse and pumping pulse is varied, contains the information on dipole-dipole couplings in the spin system. The kinetics ofV(T) decay strongly depends upon distance, mutual orientation inside interacting spin pairs and space distribution of radicals throughout the sample. The distances between spins which were measured or estimated using PELDOR in the papers reviewed are in the range of 15 ÷ 130 Å. This pulsed ESR technique turns now to be a powerful supplement to conventional ESE in studying the free radicals space distribution..  相似文献   

3.
The anisotropic hyperfine coupling constants (AHCC) from the electron spin resonance (E.S.R.) spectra of a variety of atoms in organic radicals have been calculated by means of semiempirical molecular orbital wavefunctions in the INDO approximation. Hyperfine tensors involving 1H, 13C and 19F nuclei are obtained for the ?H, ?H3, CH3?H2, (CH3)3? hydrocarbon radicals, malonic acid radical, ?H2F, ?F2H, ?F3 and CF3?H2 radicals. The calculated values are compared with available experimental, non-empirical and semiempirical values for these radicals. All integrals of the operator entering the electronic contributions have been evaluated over Slater type orbitals. The introduction of deorthogonalized wavefunctions gives generally better calculated results. In particular, the tensor components of the 19F AHCC are in good agreement with the experimental results without the necessity of readjusting the effective nuclear charges.  相似文献   

4.
Electron spin resonance (ESR) of 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) spin adducts of free radicals derived from the UV irradiation of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) under rapid scanning condition was examined. The ESR signal obtained was the superposition of two spectra, the spin adduct of the alkoxyl radical [CYPMPO-ORa, Ra = C(CH3)2-C(+NH2Cl?)NH2] and the peroxyl radical (CYPMPO-OORa). The decay rate of CYPMPO-OORa was 8,400 times that of CYPMPO-ORa. The order of the k SB/k ST values (the slope of the Stern–Volmer’s plot) for the peroxyl radical (RaOO·) was l-ascorbic acid > caffeic acid > rutin ~ Trolox ~ (+)-catechin ~ glutathione (reduced), which was almost the same order as that for the alkoxyl radical (RaO·). Though the k SB/k ST value of each antioxidant for the peroxyl radical was about half of that for the alkoxyl radical, the ratios of the values of antioxidants to that of trolox (the relative ORAC values) were almost the same between the peroxyl and alkoxyl radicals. The relative oxygen radical absorbance capacity (ORAC) values of polyphenols estimated by the ORAC-ESR assay using both peroxyl and alkoxyl radicals were smaller than those by the ORAC-FL assay.  相似文献   

5.
Amine radical cations of the type R3N·+ and [R3NCH2]·+, R=CH3, C3H7, and nitric oxide, NO, have been used to probe the bonding to the surface and the dynamics of the radicals trapped in the confined space of cages or channels in the zeolite. Regular continuous-wave electron spin resonance (ESR) was employed to study the internal motion of the cation radicals formed by γ-irradiation of amines and related ammonium ions, introduced during the synthesis of the zeolites Al-offretite, SAPO-37, SAPO-42 and AlPO4-5. The ESR spectra of [(CH3)3NCH2]·+ radical cation in several studied systems changed reversibly with temperature, indicating dynamical effects. Free rotation about the >N?CH2 bond of the [(CH3)3NCH2]·+ species was found to occur in the temperature range of 110 to 300 K, while the rotation about the >N?CH3 bonds was hindered. The observations confirm the theoretical prediction on the basis of density functional theory calculations, which indicate that the corresponding barriers are of the order of 0.3 and 7 kJ/mol, respectively. The radical cations of the type R3N·+ with R=C2H5, C3H7 were found to undergo a different type of dynamics, involving a two-jump process of the methylene hydrogens next to the nitrogen. A cage or channel size effect on the stability and molecular dynamics was inferred in some cases. Pulsed ESR was employed to study the (NO)2 triplet-state dimers in Na-A type zeolite, with the purpose to resolve the interaction with surface groups, and to elucidate the role of the zeolite on stabilizing the triplet rather than the usual singlet state. Measurements performed at 5 K gave rise to Fourier transform spectra that were assigned to the dimer species interacting with one or more23Na nuclei, with approximative parameters A(23Na)=(4.6, 4.6, 8.2) MHz and Q(23Na)=(?0.3, ?0.3, 0.6) MHz for the hyperfine and nuclear quadrupole coupling tensors, respectively. The values are of similar magnitude as those determined for the NO?Na+ complex. The stability of the triplet-state structure was attributed to unusual geometric structure imposed by the zeolite matrix, with the N?O bonds along a line as in [O?N?Na+?N?O], which according to UHF ab initio calculations has a triplet ground  相似文献   

6.
It is shown that γ rays act on glycine to give the free radical NH3 +-?H-CO2 ? which remains trapped in the solid. Electron spin resonance spectra from an irradiated single glycine crystal show marked anisotropy and it is deduced that the radicals are precisely oriented in the crystal lattice. The symmetry shown by the spectra is consistent with that of the crystal lattice. Despite overlapping of lines, the spectra due to the NH3 +-?H-CO2 ? radical have been interpreted in terms of electronnucleus coupling tensors for the N, the H(C) and the three H(N) nuclei, the latter being equivalent by virtue of a rotation or tunnelling of the -NH3 + grouping. A qualitative interpretation of these tensors in terms of the electronic structure of the radical is given. This is consistent with the negative spin density on the H(C) atoms and a positive spin density on the H(N) atoms, as predicted by theoretical treatments. The radicals appear to be oriented in the lattice in approximately the same way as their parent molecules.  相似文献   

7.
The inhibitory effects of lanthanide ions on the generation of free radicals from the reaction of Fe3+ and Fe2+ withtert-butyl hydroperoxide (tBuOOH) were investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. Peroxyl, alkoxyl, and carbon-centered free radicals generated from Fe3+-tBuOOH system were successfully trapped by DMPO, whereas peroxyl radicals were not trapped in Fe2+-tBuOOH system. Peroxyl and alkoxyl radicals are initial radical species generated from Fe3+ and Fe2+ systems, respectively. The carbon-centered radicals (CH3) might be attributed to β-scission reaction of these alkoxyl radicals. The ESR signals of DMPO adducts of these radicals were quenched in the presence of lanthanides (Ln3+ or [Ln(cit)2]3−), in concentration-dependent fashion. Moreover, the quenching effect of Ln3+ is closely related to the time the Ln3+ was added into the free-radical-triggered systems. The results reveal that there might be various mechanisms responsible for inhibiting generation and transformation of the free radicals. If Ln3+ and iron react with peroxide simultaneously, the complex formation of Ln3+ withtBuOOH will be the main mechanism of the competitive inhibitory effect of Ln3+. Whereas if Ln3+ is added after iron, the inhibitory effect on the ESR signal of DMPO adducts might be interpreted preferentially by the coordination and magnetic dipole-dipole interaction between Ln3+ and DMPO adducts.  相似文献   

8.
The dissociation of photoexcited hydrogen peroxide to generate a pair of hydroxyl radicals is generally believed to take place in a repulsive electronic singlet state. The results presented here, based on time-resolved EPR experiments on the spin polarisation pattern of the acetone ketyl radical (CH3)2C?OH, generated on photodissociation of H2O2 in 2-propanol with a 248?nm laser light, strongly indicate significant involvement of a repulsive triplet state of excited hydrogen peroxide.  相似文献   

9.
With electron spin resonance (ESR) spectroscopy, we revealed various free radicals in commercially available pepper in Japan before and after γ-irradiation. The representative ESR spectrum of the pepper is composed of a sextet centered atg=2.0, a singlet at the sameg-value and a singlet atg=4.0. The first signal is attributable to a signal with hyperfine interactions of the Mn2+ ion (hyperfine constant, 7.4 mT). The second signal is due to an organic free radical apparently induced by a sterilization process. The third signal may originate from the Fe3+ ion in the nonheme proteins. The progressive saturation behavior at various microwave power levels indicated quite different relaxation behaviors of those radicals. Namely, the peak intensity of the organic free radical component decreases in a monotonic fashion, whereas the Mn2+ and Fe3+ ESR signals substantially remain constant. This evidences the presence of three independent radicals in the pepper before irradiation. Upon γ-irradiation, a new pair of signals appeared in the pepper. The progressive saturation behavior of the pair peaks after the irradiation showed a quite different behavior as compared with the free radical centered atg=2.0. For the measure of irradiation effects, we propose a universal index for the ESR analysis of irradiated dry foods.  相似文献   

10.
Sulfur–Oxygen containing hydrocarbons are formed in oxidation of sulfides and thiols in the atmosphere, on aerosols and in combustion processes. Understanding their thermochemical properties is important to evaluate their formation and transformation paths. Structures, thermochemical properties, bond energies, and internal rotor potentials of methyl sulfinic acid CH3S(?O)OH, its methyl ester CH3S(?O)OCH3 and radicals corresponding to loss of a hydrogen atom have been studied. Gas phase standard enthalpies of formation and bond energies were calculated using B3LYP/6‐311G (2d, p) individual and CBS‐QB3 composite methods employing work reactions to further improve accuracy of the ${\Delta} _{{\bf f}} H_{{\bf 298}}^{{\bf o}} $ . Molecular structures, vibration frequencies, and internal rotor potentials were calculated. Enthalpies of the parent molecules CH3S(?O)OH and CH3S(?O)OCH3 are evaluated as ?77.4 and ?72.7 kcal mol?1 at the CBS? QB3 level; Enthalpies of radicals C?H2? S(?O)? OH, CH3? S?(?O)2, C?H2? S(?O)? OCH3 and CH3? S(?O)? OC?H2 (CBS‐QB3) are ?25.7, ?52.3, ?22.8, and ?26.8 kcal mol?1, respectively. The CH3C(?O)O—H bond dissociation energy is of 77.1 kcal mol?1. Two of the intermediate radicals are unstable and rapidly dissociate. The CH3S(?O)? O. radical obtained from the parent CH3? S(?O)? OH dissociates into methyl radical (${\bf CH}_{{\bf 3}}^{{\bf .}} $ ) plus SO2 with endothermicity (ΔHrxn) of only 16.2 kcal mol?1. The CH3? S(?O)? OC?H2 radical dissociates into CH3? S?=O and CH2=O with little or no barrier and an exothermicity of ?19.9 kcal mol?1. DFT and the Complete Basis Set‐QB3 enthalpy values are in close agreement; this accord is attributed to use of isodesmic work reactions for the analysis and suggests this combination of B3LYP/work reaction approach is acceptable for larger molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An alternative method for the determination of the deuterium content in the hydrogen bonds of ferroelectric/antiferroelectric deuterated betaine arsenate is presented. Carbon radicals formed by gamma irradiation of the betaine arsenate have been used as paramagnetic probes. The deuterium content in the hydrogen bonds has been determined by analyzing the modulation in the electron spin echo spectra of the carbon radical (CH3)3N+CHCOO? which arises because of the dipolar interactions between the paramagnetic radical and the deuterium nuclei.  相似文献   

12.
Temperature-induced transformation of the ESR spectrum in γ-irradiated single crystals of the protein aminoacid L alanine, caused by hindered rotation of the CH3 group was studied. The rotation parameters as derived from the transformation of the ESR spectrum (activation energy U=0.18 eV, prefactor ω0=1×1013 s?1) are in satisfactory agreement with the values obtained earlier from measurements of the proton spin-lattice relaxation in polycrystalline alanine samples.  相似文献   

13.
Medical grade propylene–ethylene (P–E) copolymer was irradiated by gamma rays. The radicals generated in the irradiated P–E copolymer were identified by using electron spin resonance (ESR) technique and the structural changes in the polymer were monitored with Fourier transform infrared spectroscopy (FTIR). The ESR spectra were analysed with computer simulations. The ESR studies show the formation of macro (~CH2–?H–CH2~), peroxy (POO˙), methyl and acyl (R–?=O) radicals and the asymmetric doublet, characteristic of peroxy radicals in the case of the sample irradiated at low dose (1 Mrad) and high doses (30 and 40 Mrad), respectively. The FTIR spectra of irradiated P–E copolymer indicate an increase in the concentration of peroxide groups. The absorption bands of –C=O and –OH groups were increased and the decline in the intensity of –CH3 group absorption band is reported.  相似文献   

14.
A study on electron spin resonance (ESR) spectroscopic determination of exchange interactions in organic oligoradicals is given. When the intramolecular exchange couplingJ between, unpaired electron spins in nitroxide-based oligoradicals falls within the order of 10 Oe (1 mK or 10?3 cm?1 forg=2), which is on the same order as the hyperfine couplingA of magnetic nuclei such as nitrogen atoms of nitroxide radicals, the magnitude ofJ can be determined from the hyperfine splitting pattern of ESR spectra in solutions. This range of the exchange couplingJ is not detectable in conventional magnetic susceptibility measurements. We demonstrate an application of hyperfine ESR spectroscopy as a probe for the exchange coupling to a series of organic oligoradicals, which the authors have recently developed as building blocks for molecule-based magnetic materials.  相似文献   

15.
ABSTRACT

The atmospheric oxidation mechanisms of 1- and 2-propenol initiated by OH radical have been theoretically investigated at the CCSD(T)//BH&;HLYP/6-311?+?+G(d,p) level of theory. Conventional transition state theory was employed to predict the rate constants for the initial reaction channels. The calculations clearly indicate that OH-addition channels contribute maximum to the total reaction, both for 1- and 2-propenol, while H-abstraction channels can be neglected at the temperature range of 220–520?K. The calculated total rate constants at 298?K are 1.66?×?10?11 and 7.69?×?10?12 cm3?molecule?1?s?1 respectively for 1- and 2-propenol, which are in reasonable agreement with the experimental values of similar systems (vinyl ethers?+?OH reactions). The deduced Arrhenius expressions are k(OH?+?1-propenol)?=?1.43?×?10?12 exp[(743.7?K)/T] and k(OH?+?2-propenol)?=?2.86?×?10?12 exp[(310.5?K)/T] cm3?molecule?1?s?1. Under atmospheric condition, the OH-addition intermediates (CH3C?HCH(OH)2, CH3CH(OH)C?H(OH), CH3CH(OH)2?CH2, CH3?C(OH)CH2(OH)) are likely to react rapidly with O2, the theoretically identified major products for 1-propenol are HCOOH, CH3CHO and CH3CH(OH)CHO, and the dominant products for 2-propenol are CH3COOH, HCHO and CH3COCH2OH, both companied with the regeneration of OH and HO2 radicals (crucial reactive radicals in the atmosphere).  相似文献   

16.
Abstract

Paramagnetic species produced by ultraviolet photolysis in various vegetables of domestic origin have been investigated by electron spin resonance technique. The ESR spectra of the small cut pieces of the vegetable fleshes and their frozen juices have been investigated before and under UV photolysis. The samples of potato and carrod exhibit too complex ESR spectra, but parsley, dill, white radish and green pepper do not exhibit any ESR signal before UV photolysis at 113 K. However both the small cut pieces of fleshes of potato, carrot, parsley, dill, white radish and green pepper and their juices exhibit ESR spectra during UV photolysis that we attributed to the H?O and CO? 2 radicals. The ESR parameters of these radicals have been obtained and the origins of these radicals have been shown to be the glucose molecules in the carbohydrate chains of these substances.  相似文献   

17.
The evolution of the hyperfine tensors in the nitroxide series with increasing alkyl substitution on the NO group has been studied theoretically for radicals from H2NO to C5H10NO. A projection technique has been applied to the UHF wave-functions in order to correct spin densities for quartet contamination. The magnitude of the isotropic and anisotropic couplings reflects the substitution effect already observed on the spin distribution maps, that is a spin transfer from oxygen to nitrogen when alkyl groups are substituted to hydrogens in H2NO. The alternation of the signs of the couplings along the chain as well as the cos2 γ law for the coupling constants of atoms (C or H) in β position are verified in the series. The orientation of the anisotropic tensors with respect to the chemical bonds depends on the position of the atoms in the molecule (radical site, α, β positions); it is not affected by further substitution, except for strongly asymmetric configurations.  相似文献   

18.
Relative kinetics of the reactions of OH radicals and Cl atoms with 3‐chloro‐2‐methyl‐1‐propene has been studied for the first time at 298 K and 1 atm by GC‐FID. Rate coefficients are found to be (in cm3 molecule?1 s?1): k1 (OH + CH2 = C(CH3)CH2Cl) = (3.23 ± 0.35) × 10?11, k2 (Cl + CH2 = C(CH3)CH2Cl) = (2.10 ± 0.78) × 10?10 with uncertainties representing ± 2σ. Product identification under atmospheric conditions was performed by solid phase microextraction/GC‐MS for OH reaction. Chloropropanone was identified as the main degradation product in accordance with the decomposition of the 1,2‐hydroxy alcoxy radical formed. Additionally, reactivity trends and atmospheric implications are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The electron spin-lattice relaxation times (T 1) of a variety of semiquinone ions in hydrogen bonding solvents have been measured by the pulsed saturation recovery technique as a function of temperature (T) and viscosity (η) of the solvent. Also linewidths (ΔH) have been measured in suitable cases in such solvents at low radical concentrations (~10?4 M). It is observed that (i) the temperature and viscosity dependence ofT 1 can be fitted to an equation of the form 1/T 1=A(T/η)+Bexp(-ΔE/RT) whereA andB are constants and ΔE is an activation energy of the order of 1 kcal mole?1 for these systems; (ii)T 1 is essentially independent of the radical concentration within the range 10?3 to 5×10?2 M; (iii) the concentration independent part of the linewidth (ΔH) increases linearly with (η/T) at sufficiently low temperatures, and (iv) the (η/T) dependent part ofT 1 is sensitive to the size of the semiquinone as well as that of the solvent molecule, whereas the linewidth which is proportional to (η/T) at high viscosity, low temperature region is not sensitive to the size of the semiquinone and that of the solvent. Based on these observations, it is postulated that in hydrogen bonding solvents, three types of motion contribute significantly to electron spin relaxation:
  1. A restricted small step diffusional motion, not involving large changes in the orientation of the molecule, leading to the dominant viscosity dependent contributions toT 1 and ΔH, due to spin rotation interaction;
  2. a large amplitude reorientation of the semiquinone, coupled to translational diffusion, resulting in viscosity dependent contributions toT 1 and ΔH, throughg-modulation;
  3. a hindred rotation of the semiquinone within the solvent cage, contributing toT 1 due to spin rotation interaction.
The fact thatT 1 is not sensitive to the concentration of the radicals, is ascribed to the formation of the solvent cage that prevents the close approach of radicals, thereby rendering radical-radical interactions to be weak mechanisms for relaxation, even at relatively high radical concentrations.  相似文献   

20.
In various studies of the spin dynamics in radical pairs, benzoyl-type radicals have been one of the two paramagnetic pair species. Their electron spin relaxation has been assumed to be slow enough to be neglected in the data analysis. This assumption is checked by measuring the electron spin relaxation in a sequence of three acyl radicals (benzoyl, 2,4,6-trimethylbenzoyl and hexahydrobenzoyl) by time-resolved electron paramagnetic resonance spectroscopy. In contrast to the assumed slow relaxation, rather short spin-lattice relaxation times (100–400 ns) are found for benzoyl and 2,4,6-trimethylbenzoyl radicals from the decay of the integral initial electron polarization to thermal equilibrium at different temperatures and viscosities. The relaxation is induced by a spin-rotation coupling arising from two different types of radical movements: overall rotation of the whole radical and hindered internal rotation of the CO group. The predominant second contribution depends on the barrier of the internal rotation. The obtained results are well explained in the frame of Bull’s theory when using a modified rotational correlation time τ J . The size of the spin-rotation coupling due to the internal CO group rotation in benzoyl radicals is estimated to be |C α|=1510 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号