首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
A slanted columnar TiO2 sculptured anisotropic thin film (ATF) is prepared via the glancing angle deposition technique and used as the phase retardation plate. The tilted nanocolumn microstructures of thin film induce the optical anisotropy. With the biaxial birefringent model, the optical constants dispersion equations of TiO2 ATF are derived by fitting the transmittance spectra for s-and p-polarized waves measured at normal and oblique incidence within 400 nm–1200 nm. The phase shift of polarized light after reflection and/or transmission through the TiO2 ATF is analyzed with the characteristic matrix employing the extracted structure parameters. The theoretical studies reasonably well accord with the experimental results measured with spectroscopic ellipsometry. In addition, the dependences of the phase shift on the coating physical thickness and oblique incidence angle are also discussed. Birefringence of the biaxial ATF provides a sophisticated phase modulation by varying incidence angles over a broad range to have a wide-angle phase shift.  相似文献   

2.
The phase diversity wavefront sensor is one of the tools used to estimate wavefront aberration, and it is often used as a wavefront sensor in adaptive optics systems. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at the focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency.  相似文献   

3.
A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain. By applying Fourier transformation to the recorded spectral interference signal, we retrieve the spectral phase function Ф, which is induced by three parts: the path length difference in air L, the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure. We utilize the fact that the overall optical path difference (OPD) is linearly dependent on the refractive index of the beam splitter to determine both L and Teff. The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from Ф. We show theoretically and experimentally that our new method can provide a simple and fast solution in calculating the absolute spectral phase function of optical thin films, while still maintaining high accuracy.  相似文献   

4.
This paper investigates the morphology and crystallization properties of the two crystalline phases of pentacene grown by thermal evaporation on p^+-Si substrates at room temperature by the methods of atomic force microscopy and x-ray diffraction. This kind of substrate induces a thin film phase and a triclinic phase which are formed directly onto p^+-Si substrates and constitute a layer consisting of faceted grains with a step height between terraces of 15.8A(1A=0.1 nm) and 14.9A, respectively. Above the critical thickness of the thin film phase, lamellar structures are found with an increasing fraction with the increase of the film thickness. When the film thickness is fixed, the fraction of lamellar structures increases with the increase of annealing temperature. These lamellar structures are identified as the second phase with a interplanar distance of 14.9A corresponding to the pentacene triclinic phase. Furthermore, the thin film phase consisting of several micrometre sized uniformly oriented grains at an annealing temperature of less than 80℃ and a deposition rate of 0.6A/s is observed.  相似文献   

5.
The surface morphology InGaAs layers with In composition of 0.3 on GaAs (001) substrates are simulated by the phase field method. We investigate the influence of the strain field induced by static point defects on surface morphology of the InGaAs thin film. Our simulation demonstrates that the rms roughness of the thin film surface is strongly dependent on the density and magnitude of the randomly distributed point defects. Point defects near the thin film surface can produce a relatively large change of the surface morphology. The influences of thin film thickness on the surface morphology with different defect distributions are illustrated in the simulations. Additionally, a combination of experiment and theory is used to examine the influence of the defect density and magnitude on the surface morphology and roughness.  相似文献   

6.
We investigate the relationship between natural frequencies of a multilayered system of different elastic materials and the thickness of the undermost thin film. The natural frequencies are numerically calculated from the reflection coefficient of a sample system of "steel-epoxy resin-aluminium-thin polymer" with normal incidence. Strain energy ratio is defined and calculated to give the physics explanation why some frequencies are sensitive to thickness of the thin film in certain range. Experiments of three specimens indicate that the measured natural frequencies agree well with the theoretical ones. It is found in our experiments that the ratio of the lowest film thickness to wavelength is about 1/5. The average relative errors for the inverted polymer film thicknesses are found to be 11.8%, -4.8% and -1.3%, respectively.  相似文献   

7.
Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm–1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e.,refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film.Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.  相似文献   

8.
Off-axis electron holography in a field emission gun transmission-electron microscope and electron dynamic calculation are used to determine the absorption coefficient and inelastic mean free path(IMFP) of copper. Dependence of the phase shift of the exit electron wave on the specimen thickness is established by electron dynamic simulation. The established relationship makes it possible to determine the specimeu thickness with the calculated phase shift by match of the phase shift measured in the reconstructed phase image. Based on the measured amplitudes in reconstructed exit electron wave and reference wave in the vacuum, the examined IMFP of electron with energy of 200kV in Cu is obtained to be 96nm.  相似文献   

9.
Information of molecular orientation in nematic liquid crystal (LC) is attractive and important for applications in the field of display devices. We demonstrate a novel method using a birefringence scanning near-field optical microscope (Bi-SNOM) with a probe which is inserted into the LC thin film to detect the molecular orientation from its birefringence responses in the thickness direction of the LC thin film. The probe is laterally vibrated when going forward into the LC thin film, and the retardation and azimuth angle are recorded as the probe going down. Firstly, the thickness of the LC thin film is measured by the shear force detection. Since the shear force acts as a stimulation to reorientate the LC molecules above the substrate surface, we can detect the molecular orientation caused by a polyimide alignment substrate and the effect to molecular orientation caused by vibration of fibre probe. As a result, the orientation profiling of the LC film in depth direction is obtained in both the cases that the direction of probe vibrating is vertical/parallel to the rubbing direction of the alignment film. Furthermore, the thickness of completely orientated layers just above the substrate surface can also be obtained by either vibrating probe or no-vibrating probe. Ultimately, the LC thin film can be modelled in thickness direction from all the results using this method.  相似文献   

10.
Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding Sulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.  相似文献   

11.
本文介绍一种用马赫-陈德干涉系统测量模拟合成孔径雷达数据片波差的方法.该法能把两种原因产生的波差区分开来,即把通过胶片变形的波面与平面参考波面比较,求出胶片厚度不平产生的波差;把合成孔径雷达数据片的一级衍射波面与两个半径不等的参考球面波比较,分别求出由模拟装置产生的方位维和斜距维波差.本文给出一些实验结果和分析.这种方法还可以用于测量真实合成孔径雷达数据片的波差.由胶片厚度变化产生的波差可以用液体门补偿.但是,在实际中使用液体门是很繁复的,有时也没有必要.因此,我们认瑞利准则出发导出合成孔径雷达数据片胶片厚度变化产生的波差的容限,以此作为判断是否要用液体门的依据.  相似文献   

12.
Pentacene thin films with thicknesses ranging from 10 nm to 180 nm are investigated by specular X-ray diffraction in the reflectivity regime and in the wide angular regime. The results of the reflectivity measurements show a clear shift of the 001 reflection of the thin film phase depending on the layer thickness. It is shown that this shift can be explained by the dynamical scattering theory. The wide angular regime measurements show the 00L of the thin film phase. Williams-Hall plots are used to extract information on the crystallite size and mean micro strain of the thin film phase. The crystallite size is in good agreement with the results obtained by the reflectivity measurements. From this it can be concluded that the thin film phase crystallites are extended over the entire film thickness down to the substrate. Additionally an increase of the micro strain with increasing film thickness is observed.  相似文献   

13.
Digital holographic microscopy allows the numerical reconstruction of the complex wavefront of samples, especially biological samples such as living cells. In digital holographic microscopy, a microscope objective is introduced to improve the transverse resolution of the sample; however a phase aberration in the object wavefront is also brought along, which will affect the phase distribution of the reconstructed image. We propose here a numerical method to compensate for the phase aberration of thin transparent objects with a single hologram. The least squares surface fitting with points number less than the matrix of the original hologram is performed on the unwrapped phase distribution to remove the unwanted wavefront curvature. The proposed method is demonstrated with the samples of the cicada wings and epidermal cells of garlic, and the experimental results are consistent with that of the double exposure method.  相似文献   

14.
罗群  黄林海  顾乃庭  饶长辉 《中国物理 B》2012,21(9):94201-094201
Phase diversity wavefront sensor is one of the useful tools to estimate the wavefront aberration, and it is often used as a wavefront sensor in adaptive optics system. However, the performance of the traditional phase diversity wavefront sensor is limited by the accuracy and dynamic ranges of the intensity distribution at focus and defocus positions of the CCD camera. In this paper, a modified phase diversity wavefront sensor based on a diffraction grating is proposed to improve the ability to measure the wavefront aberration with larger amplitude and higher spatial frequency. The basic principle and the optics construction of the proposed method are also described in detail. The noise propagation property of the proposed method is also analysed by using the numerical simulation method, and comparison between the diffraction grating phase diversity wavefront sensor and the traditional phase diversity wavefront sensor is also made. The simulation results show that the diffraction grating phase diversity wavefront sensor can obviously improve the ability to measure the wavefront aberration, especially the wavefront aberration with larger amplitude and higher spatial frequency.  相似文献   

15.
基于激光加载的材料状态方程的实验研究对靶面光强分布的均匀性及稳定性提出了极高的要求,靶面光强的上述两大特性在很大程度上决定了实验结果的精度和可重复性.本文针对传统窄带高相干激光装置在激光加载材料状态方程实验中表现出的靶面光强均匀性和光强分布稳定性两方面可能存在的问题,提出了基于宽带低相干激光,利用消衍射阵列透镜联合诱导非相干技术的束匀滑方案,并重点分析了波前相位畸变对靶面不均匀性及稳定性的影响.模拟结果表明,该方法明显降低了靶面不均匀性,提高了对波前相位畸变的包容度,获得了均匀、稳定的光强分布.统计分析显示,焦斑强度分布极差和不均匀性与波前相位畸变均方根梯度相关性较强.因此,可以根据统计结果以及实验对焦斑强度分布的要求,给出波前相位畸变的容差范围,对状态方程实验中激光驱动器参数的设计与优化具有指导意义.  相似文献   

16.
张勇  苏建坡  郭茂田  马凤英 《光子学报》2009,38(6):1358-1362
针对金属反射相移计算时电磁波相位符号表述混乱导致错误的穿透深度计算结果现象,通过理论推导得出电磁波两种相位表述符号下对应的金属复折射率有两种不同形式,从而导致金属反射相移位于不同的象限,穿透深度和反射相移之间的关系式也相应的有两种结论.并通过调节Ag膜的厚度制作了一系列对称全金属λ/2腔器件,器件结构为Glass/Ag/LiF/Ag.通过比较Ag膜穿透深度的实验结果和计算值,验证了其中一种金属穿透深度公式的正确性.  相似文献   

17.
投影光学系统中的偏振像差分析   总被引:2,自引:0,他引:2  
当光束斜入射时,光学薄膜存在一定的偏振效应。在飞利浦棱镜系统中,当一定大小孔径角的照明光束斜入射到分色合色薄膜后,S偏振分量和P偏振分量存在一定的相位差,使得线偏振光变成椭圆偏振光。利用琼斯矩阵偏振光线追迹的方法,分析了投影光学系统中由于两偏振分量相位差引起的偏振像差,以及它与暗态泄漏光强和系统衬比度的关系。得出了系统出瞳面上的光波偏振特性,以及在不同大小孔径角的照明光束入射下偏振像差的变化。分析了膜厚监控误差对光学系统偏振像差的影响,发现膜厚监控误差对偏振像差和系统衬比度有很大的影响。所使用的分析方法可以应用于其他大口径光学系统。  相似文献   

18.
非均匀激光辐照下硅镜热变形对光束传输特性的影响   总被引:10,自引:1,他引:9  
 使用有限元法计算了硅镜在DF化学激光器非稳腔输出的中空非均匀激光辐照下镜面温升和反射面面形随时间变化的特性,使用65阶Zernike多项式对镜面面形进行了曲面拟合,使用光线追迹的方法计算了平行光束经不同数量硅镜反射后的光束波前分布PV值、Strehl比和Zernike像差系数随时间变化的特性。计算结果表明:在典型的DF激光器输出的中空方形光束辐照下,硅反射镜的热变形将使反射光束产生波前畸变,波前畸变中,y方向像散项占据主要地位,其次是离焦项;随着激光系统中反射镜面数量的增加,高阶像差系数将逐渐增大,且波前PV值与反射次数成线性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号