首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
仪器展宽对大气压等离子体电子密度测量的影响   总被引:2,自引:0,他引:2  
实验使用两台不同的单色仪,采用光谱线型法测量了大气压氩气介质阻挡放电中的电子密度.诊断结果表明,由于不同的单色仪其仪器加宽不同,仪器加宽对总的光谱线型有较大影响.通过考虑等离子体中的各种加宽机制,采用卷积和反卷积的方法对氩原子发射谱线线型进行了分析,从整个光谱线型中分离出Stark线型,排除了仪器加宽对最终诊断结果的影响.从而最终测量了大气压氩气介质阻挡放电中的电子密度.测量得到在大气压氩气介质阻挡放电中单个放电丝存在时,电子温度为10000K时,电子密度约为3.05-3.26×1021 m-3.此方法不仅可以应用在大气压介质阻挡放电中,还可以用于测量其它大气压等离子体电子密度.  相似文献   

2.
大气压射频等离子体是近几年发展起来的一种新型非平衡等离子体。以氮气掺杂少量氩气为放电气体,实现了大气压射频介质阻挡放电。利用发射光谱对放电进行在线诊断研究,并分析谱线线型,从中分离出谱线的Stark线型,从而计算出放电通道的电子密度。研究了单个放电通道中电子密度的空间分布并测量了通道同一位置的电子密度随放电输入功率的变化。结果显示,在放电通道中部,当放电输入功率由138W增加至248W,电子密度由4.038×1021 m-3升高至4.75×1021 m-3。  相似文献   

3.
通过介质阻挡放电产生的等离子体可与燃料中的烃类分子发生碰撞裂解反应,将燃料分子裂解生成更容易起爆的氢气和小分子烃类,能有效改善液体燃料连续旋转爆震发动机的起爆性能。该研究在真空仓中开展体积介质阻挡放电的丝状放电光谱测试,分析了大气压氩气环境下体积介质阻挡放电的电子激发温度和电子密度随加载电压的变化规律。丝状放电的电子激发温度通过波尔兹曼斜率法计算,电子密度采用斯塔克展宽法计算。发现发射谱线均由氩原子4p-4s能级跃迁产生;各谱线强度随加载电压的提高均呈上升趋势,且与电压基本呈线性关系;对于大气压丝状放电,加载电压对电子激发温度和电子密度没有明显影响作用,加载电压12.5~14.5 kV范围内,电子激发温度稳定在3 400 K附近,电子密度在1025 m-3量级。  相似文献   

4.
大气压介质阻挡放电超四边形斑图的等离子体参量   总被引:1,自引:0,他引:1       下载免费PDF全文
陈俊英  董丽芳  李媛媛  宋倩  嵇亚飞 《物理学报》2012,61(7):75211-075211
本工作利用双水电极介质阻挡放电装置,采用发射光谱方法,在大气压氩气介质阻挡放电中研究了由不同空间尺度 微放电通道构成的超四边形斑图的等离子体参量.实验发现直径较大的微放电通道(大点)和直径较小的微放电通道(小点)亮度不同.采用氮分子第二正带系谱线计算了分子振动温度,利用谱线强度比方法得到了电子激发温度,用氩原子696.54 nm谱线的Stark展宽估算了电子密度.结果显示小点的电子密度和分子振动温度均高于大点,而电子激发温度低于大点.这说明稳定超四边形斑图中不同尺度微放电的等离子体状态不同.  相似文献   

5.
周倩  于淼  张秀玲 《光散射学报》2013,25(2):209-213
采用自行设计的介质阻挡放电反应器,以氩气和离子液体为放电介质,实现大气压下稳定的气(等离子体)-液(离子液体)等离子体放电,并运用光谱法在线诊断氩等离子体光谱。考察了不同咪唑基离子液体以及放电参数对大气压氩气介质阻挡放电光谱的影响。结果表明,离子液体的引入降低了氩气放电光谱的强度,谱峰强度与离子液体阳离子咪唑环上的碳链长度有关,且随碳链长度增加,谱峰强度降低;同时阴离子结构对称性低的离子液体,谱峰强度较低。加入离子液体后氩谱随放电电压及放电频率变化均呈现峰值变化。  相似文献   

6.
利用针-板介质阻挡放电装置,在4 mm长的气隙中产生了大气压氩气射流等离子体。利用电学方法实现了对放电电流和电荷量的同时测量,并且对放电脉冲数和放电功率进行了研究;利用发射光谱法对放电等离子体进行了空间分辨测量,并根据ArⅠ696.54 nm的Stark展宽计算了等离子体的电子密度。结果发现:随着外加电压的增加,每个周期内的放电脉冲数增加,放电功率也增加。随着针头距离的增加,电子密度由2.94×1015cm-3逐渐减小到2.28×1015cm-3。实验结果表明:电场强度对放电脉冲数和电子密度的空间分布起重要作用。  相似文献   

7.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。通过介质阻挡探针测量氦等离子体的射流电流,再利用电压探头测量等离子体放电电流信号,计算出电子的漂移速度和等离子体的传播速度。实验结果表明,两种方法计算出来的结果相当,射流轴向上的氦等离子体电子密度值约为1011cm?3,并随着外加电压的增加而增加,沿着轴向方向,射流电子密度维持在一个稳定值范围内。用介质阻挡探针测量得到的电子密度与用罗科夫斯基线圈及朗缪尔探针测量得到的大气压非热氦等离子体射流的电子密度值一致,比用微波天线测量的值低一个数量值。  相似文献   

8.
Li XC  Yuan N  Jia PY  Niu DY 《光谱学与光谱分析》2010,30(11):2894-2896
采用介质阻挡放电等离子体喷枪装置,在大气压下流动氩气中产生了射流等离子体。利用光电倍增管,对射流等离子体进行了时空分辨测量,分析了等离子体喷枪内介质阻挡放电和外部等离子体羽的放电特性。利用高分辨率光谱仪采集等离子体羽处的发射光谱,通过对发射光谱中OH(A2Σ+→X2Π,307.7~308.9nm)及N2+的第一负系(B2Σ+u→X2Π+g,390~391.6nm)谱线拟合得到了射流等离子体的转动温度,拟合得到的转动温度分别为443和450K。在5%的误差范围内,这2种方法得到的结果是一致的。由于在大气压下,转动温度近似等于产生气体放电的气体温度,所以可以确定大气压射流等离子体气体温度。利用该方法研究了不同电压下的气体温度,发现气体温度随着外加电压增加而增大。  相似文献   

9.
利用介质阻挡放电装置在大气压下产生了稳定的氩气等离子体羽,利用示波器对等离子体羽的外加电压、电流和发光信号进行了记录。光学诊断结果表明,等离子体羽由高速运动的等离子体子弹组成。基于碰撞辐射模型,利用300~800nm范围的光学发射谱诊断了等离子体羽的电子密度。结果表明,电子密度随外加电压和气体流量的增大而增大,随驱动频率的增大而减小。利用光谱法对等离子体羽的振动温度和转动温度进行了研究,发现其振动温度和转动温度均随外加电压和气体流量的增大而升高,随驱动频率的增大而降低。通过分析放电电场,对以上现象进行了定性解释。  相似文献   

10.
为了更加深入的研究大气压条件下Ar/CH4等离子体射流的放电机理和其内部电子的状态,通过自主设计的针-环式介质阻挡放电结构,在放电频率10 kHz、一个大气压条件下产生了稳定的Ar/CH4等离子体射流,并利用发射光谱法对其进行了诊断研究。对大气条件下Ar/CH4等离子体射流的放电现象及内部活性粒子种类进行诊断分析,重点研究了不同氩气甲烷体积流量比、不同峰值电压对大气压Ar/CH4等离子体射流电子激发温度、电子密度以及CH基团活性粒子浓度的影响规律。结果表明,大气压条件下Ar/CH4等离子体射流呈淡蓝色,在射流边缘可观察到丝状毛刺并伴有刺耳的电离声同时发现射流尖端的形态波动较大;通过发射光谱可以发现Ar/CH4等离子体射流中的主要活性粒子为CH基团,C,CⅡ,CⅢ,CⅣ,ArⅠ和ArⅡ,其中含碳粒子的谱线主要集中在400~600 nm之间,ArⅠ和ArⅡ的谱线分布在680~800 nm之间;可以发现CH基团的浓度随峰值电压的增大而增大,但CH基团浓度随Ar/CH4体积流量比的增大而减小,同时Ar/CH4等离子体射流中C原子的浓度随之增加,这表明氩气甲烷体积流量比的增大加速了Ar/CH4等离子体射流中C-H的断裂,因此可以发现增大峰值电压与氩气甲烷体积流量比均可明显的加快甲烷分子的脱氢效率,但增大氩气甲烷体积流量比的脱氢效果更加明显。通过多谱线斜率法选取4条ArⅠ谱线计算了不同工况下的电子激发温度,求得大气压Ar/CH4等离子体射流的电子激发温度在6 000~12 000 K之间,且随峰值电压与氩气甲烷体积流量比的增大均呈现上升的趋势;依据Stark展宽机理对Ar/CH4等离子体射流的电子密度进行了计算,电子密度的数量级可达1017 cm-3,且增大峰值电压与氩气甲烷体积流量比均可有效的提高射流中的电子密度。这些参数的探索对大气压等离子体射流的研讨具有重大意义。  相似文献   

11.
圆筒状DBD放电特性模拟研究   总被引:1,自引:0,他引:1  
用XOOPIC软件对同轴圆筒状反应装置DBD放电特性进行了二维模拟研究。在频率为20kHz、正弦电压幅值为5kV的大气压氩气放电中,再现了微放电通道形成和发展过程,其微放电的寿命约为4ns。获得了电子、离子、介质表面电荷密度和电场强度随空间和时间的分布,发现在高压线圈的位置附近电子、离子和介质表面电荷密度存在极值。与典型平板介质阻挡放电相比,微放电中的电子密度、场强增加2~3个数量级。  相似文献   

12.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

13.
常压介质阻挡放电等离子体发射光谱的检测分析   总被引:1,自引:1,他引:0  
以常压介质阻挡放电等离子体作为研究对象,在常温常压条件下使用介质阻挡放电光谱诊断装置,得到N2第二正系跃迁和Ar原子发射谱线。通过对放电光谱的检测分析,可以察知常压介质阻挡放电等离子体的特性,并可运用同一元素谱线的相对强度来诊断电子激发温度等物理参量,以达到对材料表面改性过程的实时监控,工作的结果对常压介质阻挡放电及其在材料改性的应用中具有重要的意义。  相似文献   

14.
在长度为20cm的石英毛细管内利用两个边缘锋利的中空的针型电极之间的氩气放电产生了高电子密度的大气压等离子体。利用发射光谱对所获得的等离子体的几个重要参数进行了诊断。利用计算机谱线拟合法合成了300nm附近OH(A-X)的(0-0)转动谱带并通过与测量谱线的比较确定了等离子体的气体温度,根据Hβ谱线Stark展宽法计算了等离子体的电子密度,采用玻尔兹曼曲线斜率法依据测得的有关氩的发射光谱估算了等离子体的电子温度。研究结果表明,这种石英毛细管内弧光放电等离子体的气体温度约为(1100±50)K;电子密度数量级在1014cm-3;电子温度约为(14515±500)K。  相似文献   

15.
大气压氩气放电六边形斑图的电子激发温度研究   总被引:1,自引:1,他引:0  
采用特殊设计的气体介质阻挡放电实验装置,对大气压氩气放电六边形斑图的放电信号及激发光谱进行了测量.采用发射光谱强度比法,计算了放电丝呈六边形斑图时的电子激发温度.实验发现,随着驱动电压频率的升高,六边形斑图的电子激发温度明显升高,各放电通道之间的放电时间相关程度提高.该工作对控制斑图的形成和研究斑图动力学具有重要参考价值.  相似文献   

16.
使用介质阻挡放电光谱诊断装置,对常压介质阻挡放电在材料改性过程中的等离子体发射光谱进行测量,记录和比较了空气、氦气和氩气常压介质阻挡放电等离子体发射光谱,并运用氩元素谱线的相对强度来诊断电子温度等物理参量,以达到对材料表面改性过程的实时监控。工作的结果对常压介质阻挡放电及其在材料改性上的应用具有重要的意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号