首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new copolymer, poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)), was synthesized by emulsion polymerization with different mass ratio of methyl methacrylate (MMA) and butyl acrylate (BA). The membranes were prepared by phase inversion and corresponding gel polymer electrolytes (GPEs) were obtained by immersing the membrane into a liquid electrolyte. In this design, the hard monomer MMA provided the copolymer with good electrolyte uptake, while the soft monomer BA provided the GPE with strong adhesion between the anode and cathode of lithium ion battery. The properties of the resulting product were investigated by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectra, scanning electron spectroscopy, linear sweep voltammetry, thermogravimetric analysis, cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge test. The results show that the obtained GPE based on P(MMA-co-BA) with the mass ratios of MMA and BA = 6:1 exhibits good conductivity (as high as 1.2 × 10?3 S cm?1) at room temperature and high electrochemical stability (up to 4.9 V vs. Li/Li+). With the application of the polyethylene (PE)-supported GPE in Li/Li(Li0.13Ni0.30Mn0.57)O2 battery, the battery presents good cyclic stability (maintaining 95.4 % of its initial discharge capacity after 50 cycles) at room temperature.  相似文献   

2.
Composite electrodes based on the nitroxide free radical-contained pyrrole copolymer (PPy-co-PPy-C-TEMPO) as active material were one-step synthesized by in situ electrochemical polymerization, which was then directly applied as the cathode of lithium ion batteries. The structure, morphology, electrochemical property, and charge-discharge performances of prepared copolymers were characterized by FTIR, SEM, cyclic voltammogram, electrochemical impedance spectroscopy, and galvanostatic charge-discharge testing, respectively. The results demonstrated that PPy-co-PPy-C-TEMPO-based composite cathodes have been successfully prepared by in situ electrochemical method, and the introduction of the nitroxide free radical (TEMPO) could obviously affect the morphology and electrochemical characteristics of the obtained electroactive polymers. And the charge/discharge tests showed that with the introduction of the TEMPO, PPy-co-PPy-C-TEMPO-based composite cathodes exhibited an improved specific capacity of 70.9 mAh g?1 for PPy-co-PPy-C-TEMPO (4:1) and 62.6 mAh g?1 for PPy-co-PPy-C-TEMPO (8:1) as measured at 20 mA g?1 between 2.5 and 4.2 V, which were remarkably higher than that of the pure PPy cathode of 41.0 mAh g?1 under the same experimental conditions. Also, the obtained PPy-co-PPy-C-TEMPO copolymers demonstrated an acceptable cycling stability during the charge-discharge process. These obtained cell performances for the composite cathodes were attributed to the application of the in situ electrochemical polymerization technology, which enhanced the intimate integration between conductive polymer film and electrode. Furthermore, the introduction of TEMPO-contained pyrrole (Py-C-TEMPO) improved the morphology of the composite cathode, which was in favor of the utilization of active materials and the improved electrochemical performances.  相似文献   

3.
Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84?±?0.97)?×?10?10 S cm?1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28?±?0.43)?×?10?4 S cm?1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.  相似文献   

4.
Potato starch (PS)-methyl cellulose (MC) blend solid biopolymer electrolytes infused with ammonium nitrate (NH4NO3) and glycerol as plasticizer are made via the solution cast technique. Fourier transform infrared (FTIR) spectroscopy indicates that NH4NO3 has interacted with the polymer blend host. The addition of 40 wt% glycerol in the highest conducting plasticizer free electrolyte has improved the conductivity to the order of ~10?3 S cm?1. The thermal stability of the electrolytes is identified by thermogravimetric analysis (TGA). Result from X-ray diffraction (XRD) analysis shows that the electrolyte with maximum conductivity value has the lowest degree of crystallinity. Differential scanning calorimetry (DSC) analysis reveals that the highest conducting plasticized electrolyte possesses the lowest glass transition temperature (T g) of ?27.5 °C. Conductivity trend is further verified by dielectric analysis. Transference numbers of ion (t ion) and electron (t e) for the highest conducting electrolyte are identified to be 0.98 and 0.02, respectively, confirming that ions are the dominant charge carriers. Linear sweep voltammetry (LSV) evaluates that the potential window for the electrolyte is 1.88 V. The internal resistance of the electrochemical double-layer capacitor (EDLC) is between 29 and 64 Ω. From the charged-discharged measurement, the value of C s is 31 F g?1. The EDLC is stable over 1000 cycles.  相似文献   

5.
Poly(vinyl butyral) (PVB) is of particular interest because of its low cost, extremely wide temperature work range (? 20 to 120 °C), and efficient chemical stability. In this study, a gel polymer electrolyte (GPE) containing Li+ ions was fabricated by using dimethylacetylamine (DMA), lithium perchlorate (LiClO4), and PVB. The experimental results indicated that a highly transparent GPE with a high ionic conductivity (σ) could be obtained by mixing glue (DMA with a PVB content of 10 wt%) with a LiClO4 content of 6 wt%. It was found that the ionic conductivity (σ) of the GPE depended on the LiClO4 content, and the GPE with a LiClO4 content of 6 wt% exhibited a maximum σ of 7.73 mS cm?1, a viscosity coefficient of 3360 mPa s, and a transmittance greater than 89% (visible region) at room temperature. Furthermore, PVB improved the electrolyte solution leakage, and the LiClO4 was used as an ion supply source for the high σ of the GPE.  相似文献   

6.
Lu Liu  Hao Cui  Hao An  Jianping Zhai  Yang Pan 《Ionics》2017,23(6):1517-1523
Nitrite is a common contaminant in drinking water and groundwater with high environmental and health risks. Electrochemical sensing method is a selective and easy technique to detect nitrite in water. In this study, we report a research about a poly(aniline-co-o-aminophenol)-modified glassy carbon electrode (PAOA/GCE) for aqueous nitrite detection. With stable redox activity and conductivity in a wide pH range compared with polyaniline, PAOA is suitable to be used as electrode material in a neutral medium. The PAOA/GCE was prepared by cyclic voltammogram method by electrochemical copolymerization of o-aminophenol and aniline. SEM and FT-IR results proved the formation of PAOA, and the electrode exhibited higher responses toward nitrite oxidation compared with polyaniline-modified GCE and bare GCE. We also studied the impact of scan rate, pH, and temperature on nitrite detection. The PAOA/GCE could be used in a wide pH range from 2 to 8 and used to detect nitrite in the linear range from 5.0 × 10?6 to 2.0 × 10?3 M with the detection limit of 2 × 10?6 M. Its excellent reproducibility, stability, and anti-interference ability make it a promising electrode in detecting aqueous nitrite in drinking water and groundwater.  相似文献   

7.
Let \({\mathfrak{D}}\) be the space consists of pairs (f, g), where f is a univalent function on the unit disc with f(0) = 0, g is a univalent function on the exterior of the unit disc with g(∞) = ∞ and f′(0)g′(∞) = 1. In this article, we define the time variables \({t_n, n\in \mathbb{Z}}\), on \({\mathfrak{D}}\) which are holomorphic with respect to the natural complex structure on \({\mathfrak{D}}\) and can serve as local complex coordinates for \({\mathfrak{D}}\) . We show that the evolutions of the pair (f, g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting \({\mathfrak{D}}\) to the subspace Σ consists of pairs where \({f(w)=1/\overline{g(1/\bar{w})}}\), we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin [31]. Since every C 1 homeomorphism γ of the unit circle corresponds uniquely to an element (f, g) of \({\mathfrak{D}}\) under the conformal welding \({\gamma=g^{-1}\circ f}\), the space Homeo C (S 1) can be naturally identified as a subspace of \({\mathfrak{D}}\) characterized by f(S 1) = g(S 1). We show that we can naturally define complexified vector fields \({\partial_n, n\in \mathbb{Z}}\) on Homeo C (S 1) so that the evolutions of (f, g) on Homeo C (S 1) with respect to ? n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f ?1g ?1). Moreover, in the latter case, the time variables are Fourier coefficients of γ and 1/γ ?1.  相似文献   

8.
Polymer-derived SiCN ceramics, annealed (also referred to as pyrolyzed) at 1000, 1100, and 1285 °C, and doped with Fe(III) acetylacetonate, are investigated by electron paramagnetic resonance (EPR) from 4 to 120 K at X-band (9.425 GHz). In addition, the SiCN ceramic, annealed at 1100 °C, was studied by EPR at 300 K at W-band (93.96 GHz). There was observed a significant increase in EPR linewidth due to dangling bonds (g = 2.001) below 20 K at X-band. The low-field X-band FMR line (g ≈ 12) indicated the presence of ferromagnetic Fe5Si3 crystallites. There were found two EPR lines due to carbon-related dangling bonds: (1) those present as defects on the surface of the free-carbon phase (as sp2 carbon-related dangling bonds with g = 2.0011) and (2) those present within the bulk of carbon phase (as sp3 carbon-related dangling bonds with g = 2.0033). On the other hand, the intense low-field EPR signal observed at X-band was not observed at W-band. As well, there was observed splitting of the single broad EPR signal observed at g = 2.05 at X-band into two signals at W-band at g = 1.99 and g = 2.06, due to two different Fe-containing superparamagnetic nanocrystallites. Two new EPR signals, not observed at X-band, were observed at W-band, namely at g = 2.28 and g = 3.00, which are also due to g of these superparamagnetic nanocrystallites.  相似文献   

9.
Isomeric ratios of 179Hf m2,g yields in the (γ, n) reaction and the cross section for the 179Hf m2 population in the (α, p) reaction are measured for the first time at the end-point energies of 15.1 and 17.5 MeV for bremsstrahlung photons and 26 MeV for alpha particles. The results are σ = (1.1 ± 0.11) × 10?27 cm2 for the 176Lu(α, p)179Hf m2 reaction and Y m2/Y g = (6.1 ± 0.3) × 10?6 and (3.7 ± 0.2) × 10?6 for the 180Hf(γ, n)179Hf m22 reaction at Е ep =15.1 and 17.5 MeV, respectively. The experimental data on the relative 179Hf m2 yield indicate a single-humped shape of the excitation function for the 180Hf(γ, n)179Hf m2 reaction. Simulation is performed using the TALYS-1.4 and EMPIRE-3.2 codes.  相似文献   

10.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

11.
We link the Boundary Control Theory and the Titchmarsh-Weyl Theory. This provides a natural interpretation of the A?amplitude due to Simon and yields a new efficient method to evaluate the Titchmarsh-Weyl m?function associated with the Schrödinger operator H = ?? x 2  + q(x) on L 2(0, ∞) with Dirichlet boundary condition at x = 0.  相似文献   

12.
On a fixed Riemann surface (M 0, g 0) with N Euclidean ends and genus g, we show that, under a topological condition, the scattering matrix S V (λ) at frequency λ > 0 for the operator Δ+V determines the potential V if \({V\in C^{1,\alpha}(M_0)\cap e^{-\gamma d(\cdot,z_0)^j}L^\infty(M_0)}\) for all γ > 0 and for some \({j\in\{1,2\}}\) , where d(z, z 0) denotes the distance from z to a fixed point \({z_0\in M_0}\) . The topological condition is given by \({N\geq \max(2g+1,2)}\) for j = 1 and by N ≥ g + 1 if j = 2. In \({\mathbb {R}^2}\) this implies that the operator S V (λ) determines any C 1, α potential V such that \({V(z)=O(e^{-\gamma|z|^2})}\) for all γ > 0.  相似文献   

13.
In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g?1 after 400th cycles at 1000 mA g?1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.  相似文献   

14.
Let F : [0, ∞) → [0, ∞) be a strictly increasing C 2 function with F(0) = 0. We unify the concepts of F-harmonic maps, minimal hypersurfaces, maximal spacelike hypersurfaces, and Yang-Mills Fields, and introduce F-Yang-Mills fields, F-degree, F-lower degree, and generalized Yang-Mills-Born-Infeld fields (with the plus sign or with the minus sign) on manifolds. When \({F(t)=t, \frac 1p(2t)^{\frac p2}, \sqrt{1+2t} -1,}\) and \({1-\sqrt{1-2t},}\) the F-Yang-Mills field becomes an ordinary Yang-Mills field, p-Yang-Mills field, a generalized Yang-Mills-Born-Infeld field with the plus sign, and a generalized Yang-Mills-Born-Infeld field with the minus sign on a manifold respectively. We also introduce the E F,g ?energy functional (resp. F-Yang-Mills functional) and derive the first variational formula of the E F,g ?energy functional (resp. F-Yang-Mills functional) with applications. In a more general frame, we use a unified method to study the stress-energy tensors that arise from calculating the rate of change of various functionals when the metric of the domain or base manifold is changed. These stress-energy tensors are naturally linked to F-conservation laws and yield monotonicity formulae, via the coarea formula and comparison theorems in Riemannian geometry. Whereas a “microscopic” approach to some of these monotonicity formulae leads to celebrated blow-up techniques and regularity theory in geometric measure theory, a “macroscopic” version of these monotonicity inequalities enables us to derive some Liouville type results and vanishing theorems for p?forms with values in vector bundles, and to investigate constant Dirichlet boundary value problems for 1-forms. In particular, we obtain Liouville theorems for F?harmonic maps (which include harmonic maps, p-harmonic maps, exponentially harmonic maps, minimal graphs and maximal space-like hypersurfaces, etc.), F?Yang-Mills fields, extended Born-Infeld fields, and generalized Yang-Mills-Born-Infeld fields (with the plus sign and with the minus sign) on manifolds, etc. As another consequence, we obtain the unique constant solution of the constant Dirichlet boundary value problems on starlike domains for vector bundle-valued 1-forms satisfying an F-conservation law, generalizing and refining the work of Karcher and Wood on harmonic maps. We also obtain generalized Chern type results for constant mean curvature type equations for p?forms on \({\mathbb{R}^m}\) and on manifolds M with the global doubling property by a different approach. The case p = 0 and \({M=\mathbb{R}^m}\) is due to Chern.  相似文献   

15.
The spins of several excited states of Er166 have been investigated byγγ-angular correlation measurements. The spin sequence 0+, 2+, 4+, 6+ for the ground state rotational band was presumed to be correct. Unique assignments were derived for the states of 1076 keV, 1377 keV and 1785 keV asI=5, 7 and 6 respectively. These results are in agreement with the spins proposed byGallagher jr. andSoloviev. The multipolarities of theγ-transitions of 408 keV, 709 keV, 811 keV and 831 keV were derived as 95%E1+(5±1)%M2, 99·6%E1+(0·4±0·5)%M2, 99·1%E2+(0·9±0·3)%M1, and 96·1%E2+(3·9±1)%M1 respectively. The unusual mixing ratios of the transitions of 811 keV and 831 keV can be understood as a consequence of theK-selection rule. Eachγ-transition from the 1785 keV state should be stronglyK-forbidden and one expects a half-life ofT 1/2≈3·10?9s. A measurement of the time spectrum of the coincidences between theβ-radiation and the high energyγ-lines gave however:T 1/2(1785 keV state)≦3·10?10s. The rotation of the angular correlation between the 184 keV line and theγ-group at 820 keV has been measured in an external magnetic field of 53000 gauss as:ω·τ(4+)=0·083±0·006. This value contains small corrections for an additional rotation of the angular correlation of the 831 keV–184 keV triple cascade in the 6+state and for a small attenuation by internal fields. WithT 1/2(4+state)=1·23·10?10s, andβ=7·08 one gets for theg-factorg R=+0·266±0·024 in good agreement with recent results for the 2+ state.  相似文献   

16.
We report a polycrystalline NaFeTiO4 prepared via conventional solid-state reaction route. X-ray diffraction (XRD) results and Rietveld refinement confirmed single-phase NaFeTiO4 having an orthorhombic unit cell with lattice parameters a = 9.17051 Å, b = 2.96310 Å, and c = 10.73676 Å and Pnma space group (No. 62). Energy dispersive spectrum (EDS) yielded sample stoichiometry that agrees well with its molecular formula. The surface morphology indicated a cylindrical rod-like microstructure comprising well-defined grains having variable dimension, i.e., diameter ~?250 to 350 nm and length ~?1 to 5 μm. Vibrational spectroscopy (FTIR/Raman) results indicated presence of FeO6 and TiO6 octahedra in good agreement with crystallographic study. Brunner-Emmet-Teller (BET) surface area measurement yielded a specific surface area as high as ~?4.28 m2 g?1. Electrical impedance spectrum indicated presence of grains separated by well-defined grain boundaries in agreement with microstructural analysis. Electrical conductivity of the material was estimated to be ~?6.05 × 10?6 S cm?1. The structural model obtained using XRD and vibrational spectrum results suggest layered tunnel/cage structure of cage dimension ~?4.65 Å, along [010] direction in the xz plane, which is larger than the size of Na+ ion (0.98 Å). So, easier Na+ migration feasibility exists in NaFeTiO4 crystal lattice making it a good candidate for electrode applications.  相似文献   

17.
The paramagnetic resonance absorption of trivalent erbium in single crystals of Y2O3 on sites of crystal field symmetry C3i and C2 is investigated at 4.2°K and 9.2 kMc/s. The values of theg-tensors and those of the hyperfine structure parallel to the axes of crystalline fields are:g =12.176,g =3.319,A=426.4·10?4 cm?1, andg z =12.314,g x =1.645,g y =4.892, andA z =433.2·10?4 cm?1 for the C3i-ions and the C2-ions, respectively. For ions on sites of symmetry C2 the principal axes ofg in the plane perpendicular toz are found ± 2° beside the [100]-directions. This is different from the result on Yb3+ in Y2O3. The dependency ofg on the angle of rotation is determined for the (001)-, (110)-, and (111)-plane.  相似文献   

18.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

19.
On the basis of the electromagnetic response of high frequency relic gravitational waves (HFRGWs), we research on more accurate calculation of signal (i.e. transverse perturbative photon flux (PPF)) and background photons flux (BPF) in the sycro-resonance electromagnetic system, which consists of Gaussian beam (GB), a static magnetic field and fractal membranes. According to the relationship between frequency of gravitational waves and its dimensionless amplitude, we focus on the HFRGWs with ν g  = 2.9 GHz, h ~ 10?30 in the pre-big bang and quintessential inflationary models. The results show the peak value of the transverse BPF (~ 1020 s?1) is around |x| = 0.08 m, where |x| is the transverse distance to the longitudinal symmetrical surface of the GB, while the maximum transverse PPF always appears at x = 0 (\({N^{(1)}_{x} \sim 2.60\times10^{2}\,{\rm s}^{-1}}\) with the optimal phase difference between the GB and the resonant component of the HFRGWs δ = (n + 0.9)π, n = 0, 1, 2 . . .). However, the observable PPF should be ~ 1.19 × 102 s?1 because of the stochastic nature of the HFRGWs’ phase. Since the decay speed of BPF is much quicker than PPF, it is hopeful to figure out the signal in some optimal regions. Moreover, we compare the decay speed of BPF and PPF in nature mode, and find the threshold value of x where PPF exceeds to BPF. It demonstrates that the limitation of our detection sensitivity comes from the strength of PPF rather than swamping by BPF. On the other hand, with the fractal membrane, the comparison between BPF and PPF provides the optimal detection area \({x\in[0.28,1]}\) m. In addition, through the calculation of shot noise and conservative estimation, we find that our sensitivity is h = 10?26 in 4 months signal accumulate time.  相似文献   

20.
Single crystal X-band electron paramagnetic resonance (EPR) studies on divalent copper ions embedded in dipotassium diaquabis(malonato-κ 2 O,O′) nickelate dihydrate have been performed at 300, 123 and 77 K to understand the nature of Jahn–Teller distortion in the paramagnetic host lattice. The angular variation of the EPR spectra reveals the presence of two sites, with one site not showing hyperfine resolution even at 77 K. The spin-Hamiltonian parameters of this six-coordinated Cu(II) ion, evaluated from EPR spectra at various temperatures, are:
  • 300 K: g 11 = 2.125, g 22 = 2.118, g 33 = 2.290, no copper hyperfine resolution
  • 123 K: g 11 = 2.229, g 22 = 2.113, g 33 = 2.319 and A 11 = 5.02, A 22 = 3.82, A 33 = 6.87 mT
  • 77 K: g 11 = 2.224, g 22 = 2.114, g 33 = 2.324 and A 11 = 5.32, A 22 = 3.90, A 33 = 7.06 mT
respectively. The low value observed for A 33 at 123 and 77 K has been explained by assuming a ground state \({\text{d}}_{{x^{2} - y^{2} }}\) wave function for Cu(II) ions, contaminated with the excited state \({\text{d}}_{{z^{2} }}\). From the temperature dependence of the EPR spectra, the Cu(II) ions can be considered as a static Jahn–Teller system, with contaminated ground state. The admixture coefficients and bonding parameters have also been calculated by combining EPR and optical data. The EPR spectrum of powder sample confirms single crystal data.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号