首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
郭海峰  哈斯花  朱俊 《发光学报》2010,31(6):870-876
考虑自发与压电极化引起的内建电场,自由电子-空穴气屏蔽效应和外加电场,基于常微分数值计算,自洽求解电子与空穴的薛定谔方程和泊松方程以获得基态能级。以典型的GaN/A lxGa1-xN纤锌矿氮化物应变量子阱为例,通过数值求解,得到电子与空穴的本征基态能和相应本征波函数。计算结果表明:沿量子阱生长方向所施加的外加电场将抵消阱中内建电场的作用,阱结构的弯曲程度略显平缓,使电子(空穴)本征波函数逆(顺)着外电场方向移动,且均向阱中心移动,波峰峰值增加,隧穿几率减小;在固定外电场情况下,电子与空穴基态能级随阱宽的增加而减小,随掺杂组分的增加而增加,表明外加电场对内建电场有所削弱以及量子限制作用对电子(空穴)基态能有显著的影响。  相似文献   

2.
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.  相似文献   

3.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

4.
In this work, we investigate the impact of Si doped AlGaN quantum barriers on the optical powers for [0001] oriented III‐nitride based deep‐ultraviolet light‐emitting diodes (DUV LEDs). The polarization‐induced electric field in the active region is screened as the result of Si‐doped quantum barriers, which gives rise to the improved spatial overlap between electron and hole wave functions. The polarization screening effect within the quantum wells is further proven by the observation of the blue shift for the wavelength. However, the hole distribution across the active region can be significantly retarded if the Si dosage in the quantum barriers is too high. Therefore, the improved radiative recombination within the active region can be realized provided that the Si dosage in the quantum barriers is moderately adjusted to guarantee both the better hole injection efficiency and the screened polarization effect in the multiple quantum wells.  相似文献   

5.
The spectrum and kinetics of the circular polarization of InP quantum dot (QD) photoluminescence have been experimentally investigated under different conditions of optical excitation and at different bias voltages applied to the sample. It is established that, at a bias of about ?0.1 V, the degree of photoluminescence polarization is negative and reaches ?50% in limiting cases. It is concluded that the negative polarization is formed in QDs containing one recident electron per dot and is mainly caused by the optical orientation of the electron spin. It is shown that all experimentally observed regularities are well described in the framework of the model assuming the energy relaxation of photogenerated electron-hole pairs accompanied by the electron- hole spin flip-flop process.  相似文献   

6.
《中国物理 B》2021,30(5):53201-053201
The exciton Stark shift and polarization in hemispherical quantum dots(HQDs) each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method. A highly anisotropic Stark redshift of exciton energy is found. As the electric field is rotated from Voigt to Faraday geometry, the redshift of exciton energy monotonically decreases. This is because the asymmetric geometric shape of the hemispherical quantum dot restrains the displacement of the wave function to the higher orbital state in response to electric field along Faraday geometry. A redshift of hole energy is found all the time while a transition of electron energy from this redshift to a blueshift is found as the field is rotated from Voigt to Faraday geometry. Taking advantage of the diminishing of Stark effect along Faraday geometry, the hemispherical shapes can be used to improve significantly the radiative recombination efficiency of the polar optoelectronic devices if the strong internal polarized electric field is along Faraday geometry.  相似文献   

7.
The quantum effects on the polarization bremsstrahlung emission due to the low-energy electron-atom collisions are investigated in partially ionized dense hydrogen plasmas. The impact parameter analysis is employed to describe the motion of the projectile electron in order to investigate the variation of the bremsstrahlung emission spectrum as a function of the impact parameter, de Broglie wave length, Debye length, and radiation photon energy. The results show that the quantum effects strongly suppress the polarization bremsstarhlung emission. It is also found that the polarization bremsstarhlung emission cross section shows the maximum value at the position of the Bohr radius. It is interesting to note that the quantum effects are found to be more important than the screening effects in the polarization bremsstarhlung emission.  相似文献   

8.
We measure the hyperfine interaction of the valence band hole with nuclear spins in single InP/GaInP semiconductor quantum dots. Detection of photoluminescence (PL) of both "bright" and "dark" excitons enables direct measurement of the Overhauser shift of states with the same electron but opposite hole spin projections. We find that the hole hyperfine constant is ≈11% of that of the electron and has the opposite sign. By measuring the degree of circular polarization of the PL, an upper limit to the contribution of the heavy-light hole mixing to the measured value of the hole hyperfine constant is deduced. Our results imply that environment-independent hole spins are not realizable in III-V semiconductor, a result important for solid-state quantum information processing using hole spin qubits.  相似文献   

9.
The effects of transverse electric field on the electronic structures, exciton states and excitonic absorption spectra in a cylindrical quantum wire are theoretically investigated in detail. The quantum wire is assumed to GaAs material surrounded by the infinite potential barrier. The results show that the external electric field removes the degeneracy of the electron or hole states. The energy levels of electron and hole, exciton binding energy, excitonic absorption coefficient and absorption energy decrease with increasing the strength of the electric field or the wire radius. The effects of the electric field become more significant for wide wires. The phenomena can be explained by the reduced spatial overlap of ground electron and hole states.  相似文献   

10.
Understanding of charge/energy exchange processes and interfacial interactions that occur between quantum dots (QDs) and the metal oxides is of critical importance to these QD-based optoelectronic devices. This work reports on linear dipole behavior of single near-infrared emitting CdSeTe/ZnS core/shell QDs which are encased in indium tin oxide (ITO) semiconductor nanoparticles films. A strong polarization anisotropy in photoluminescence emission is observed by defocused wide-field imaging and polarization measurement techniques, and the average polarization degree is up to 0.45. A possible mechanism for the observation is presented in which the electrons, locating at single QD surface from ITO by electron transfer due to the equilibration of the Fermi levels, result in a significant Stark distortion of the QD electron/hole wavefunctions. The Stark distortion results in the linear polarization property of the single QDs. The investigation of linear dipole behavior for single QDs encased in ITO films would be helpful for further improving QD-based device performance.  相似文献   

11.
We present a simple, general method for calculating the binding energies of excitons in semiconductor quantum wires. The binding energy is given by an integral (over the electron and hole two-dimensional coordinates perpendicular to the wire) of a prescribed function weighted by the squares of the electron and hole subband envelope functions. Taking as an example, we calculate the binding energy of exciton in quantum wires assuming an infinite confining potential. This method should be applicable to a variety of more complex systems.  相似文献   

12.
采用改进的LLP方法在考虑体声子影响的情况下研究了抛物量子阱中电子-LO声子相互作用对D-心能量的影响.研究结果表明,阱宽较小时,D-心的基态能量和结合能随着阱宽L的增大而急剧减小;阱宽较大时,能量的减小比较缓慢,最后接近体材料中的三维值.并且得出了电子-LO声子相互作用可使D-心的结合能有显著的提高.  相似文献   

13.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

14.
The quantum kinetic equations of the electron and hole densities and the interband polarization are derived for a laser-pulse-excited semiconductor with Coulomb interaction including renormalization effects, excitonic effects and scattering with memory kernels. Numerical solutions of this set of non-Markovian, nonlinear integro-differential equations are obtained for a statically screened Coulomb potential.  相似文献   

15.
The effects of transverse electric field on the energy levels of electron and heavy hole, exciton binding energy and excitonic absorption spectra of GaAs parabolic quantum wire are theoretically investigated in detail. The results indicate that the electron and hole energy levels, exciton binding energy, excitonic absorption coefficient and absorption energy becomes smaller with the increase of electric field. That is more significant at the condition of weaker parabolic confinement potential. The phenomena can be explained by the separation of overlap integral of the electron and hole at the ground states.  相似文献   

16.
《Physics letters. A》2005,344(6):457-462
The problem of excitonic and biexcitonic binding is studied in the system of parabolic coordinates for a lens-shaped quantum box. The exciton wavefunction is expanded in terms of electron–hole configurations made from electron and hole single-particle states. Configuration interaction method and perturbative calculations are used to study the competition between confinement and correlation effects. Biexcitonic binding energy is calculated in the strong confinement regime and a comparison to the case of a spherical box is made. Absorption spectra with and without correlation effects are computed for InAs/InP quantum dots. Excitonic binding energy and enhancement factor are estimated to be equal to about 20 meV and 1.5, respectively. The excitonic absorption is finally studied in the presence of a uniform vertical electric field. A weak vertical Stark effect is predicted for lens-shaped quantum box described within this model.  相似文献   

17.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

18.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

19.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

20.
We report the results from detailed optical spectroscopy from MOCVD grown GaN/AlGaN multiple quantum wells (MQWs), as opposed to most previous studies where MBE was employed by means of photoluminescence (PL) technique. In this paper we will present theoretical and experimental results demonstrating how polarization induced electric fields and bound interface charges in GaN/AlGaN MQWs affect the emission peak energy, PL line shape, as well as the emission line width. Theoretically estimated fields in this work are consistent with experimental data. Transition energy of the heavy hole and electron ground state Ee-hh in GaN/AlGaN MQWs were calculated and it is found that it stays in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号