首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The present article proposes a new hybrid Eulerian–Lagrangian numerical method, based on a volume particle meshing of the Eulerian grid, for solving transport equations. The approach, called Volume Of Fluid Sub-Mesh method (VOF-SM), has the advantage of being able to deal with interface tracking as well as advection–diffusion transport equations of scalar quantities. The Eulerian evolutions of a scalar field could be obtained on any orthogonal curvilinear grid thanks to the Lagrangian advection and a redistribution of particles on the Eulerian grid. The Eulerian concentrations result from the projection of the volume and scalar informations handled by the particles. The particle velocities are interpolated from the Eulerian velocity field. The VOF-SM method is validated on several scalar interface tracking and transport problems and is compared to existing schemes within the literature. It is finally coupled to a Navier–Stokes solver and applied to the simulation of two free-surface flows, i.e. the two-dimensional buckling of a viscous jet during the filling of a square mold and the three-dimensional dam-break flow in a tank.  相似文献   

2.
We present a multidimensional Eulerian advection method for interfacial and incompressible flows in two-dimensional Cartesian geometry. In the scheme we advect the grid nodes backwards along the streamlines to compute the pre-images of the grid lines. These pre-images are approximated by continuous, piecewise-linear lines. The enforcement of the discrete version of the incompressibility constraint is a very important issue to determine correctly the flux polygons and to reduce considerably the integration, discretization and interpolation numerical errors. The proposed method compares favorably with other previous multidimensional advection methods as long as the initial interface line is well reconstructed. Conversely, we show that when the interface is very fragmented the total numerical error is completely dominated by the reconstruction error and in these conditions it is very difficult to assess which advection scheme is the most reliable one.  相似文献   

3.
We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection–diffusion, the Burgers equation, the Buckley–Leverett five-spot problem, and curvature-driven level-set surface refinement.  相似文献   

4.
In this paper, a Lagrangian particle method is proposed for the simulation of multiphase flows with surfactant. The model is based on the multiphase smoothed particle hydrodynamics (SPH) framework of Hu and Adams (2006) [1]. Surface-active agents (surfactants) are incorporated into our method by a scalar quantity describing the local concentration of molecules in the bulk phase and on the interface. The surfactant dynamics are written in conservative form, thus global mass of surfactant is conserved exactly. The transport model of the surfactant accounts for advection and diffusion. Within our method, we can simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial transport such as adsorption or desorption. The flow-field dynamics and the surfactant dynamics are coupled through a constitutive equation, which relates the local surfactant concentration to the local surface-tension coefficient. Hence, the surface-tension model includes capillary and Marangoni-forces. The present numerical method is validated by comparison with analytic solutions for diffusion and for surfactant dynamics. More complex simulations of an oscillating bubble, the bubble deformation in a shear flow, and of a Marangoni-force driven bubble show the capabilities of our method to simulate interfacial flows with surfactants.  相似文献   

5.
In this paper we propose an interface sharpening technique for two-phase compressible-flow simulations based on volume-of-fluid methods. The idea of sharpening the two-fluid interface is to provide a correction algorithm which can be applied as post-processing to the volume-fraction field after each time step. For this purpose an anti-diffusion equation, i.e. a diffusion equation with a positive diffusion coefficient, is solved to counter-act the numerical diffusion resulting from the underlying VOF discretization. The numerical stability and volume-fraction boundedness in solving the anti-diffusion equation are ensured by a specified discretization scheme. No interface reconstruction and interface normal calculation are required in this method. All flow variables are updated with the sharpened volume-fraction field for ensuring the consistency of the variables, and the update of the phase mass, momentum and energy is conservative. Numerical results for shock-tube and shock-bubble interactions based on the ideal-gas EOS and shock contact problems based on the Mie–Grüneisen EOS show an improved interface resolution. The large-scale interface structures are in good agreement with reference results, and finer small-scale interface structures are recovered in a consistent manner as the grid resolution increases. As compared with reference high grid-resolution numerical results based on AMR algorithms, the interface roll-up phenomena due to the Richtmyer–Meshkov instability and the Kelvin–Helmholtz instability are recovered reliably for shock-bubble interactions involving different ideal gases.  相似文献   

6.
In this paper, we present a method for obtaining sharp interfaces in two-phase incompressible flows by an anti-diffusion correction, that is applicable in a straight-forward fashion for the improvement of two-phase flow solution schemes typically employed in practical applications. The underlying discretization is based on the volume-of-fluid (VOF) interface-capturing method on unstructured meshes. The key idea is to steepen the interface, independently of the underlying volume-fraction transport equation, by solving a diffusion equation with reverse time, i.e. an anti-diffusion equation, after each advection time step of the volume fraction. As the solution of the anti-diffusion equation requires regularization, a limiter based on the directional derivative is developed for calculating the gradient of the volume fraction. This limiter ensures the boundedness of the volume fraction. In order to control the amount of anti-diffusion introduced by the correction algorithm we propose a suitable stopping criterion for interface steepening. The formulation of the limiter and the algorithm for solving the anti-diffusion equation are applicable to 3-dimensional unstructured meshes. Validation computations are performed for passive advection of an interface, for 2-dimensional and 3-dimensional rising-bubbles, and for a rising drop in a periodically constricted channel. The results demonstrate that sharp interfaces can be recovered reliably. They show that the accuracy is similar to or even better than that of level-set methods using comparable discretizations for the flow and the level-set evolution. Also, we observe a good agreement with experimental results for the rising drop where proper interface evolution requires accurate mass conservation.  相似文献   

7.
In this paper, a new formulation of the projection approach is introduced for stand-alone probability density function (PDF) methods. The method is suitable for applications in low-Mach number transient turbulent reacting flows. The method is based on a fractional step method in which first the advection–diffusion–reaction equations are modelled and solved within a particle-based PDF method to predict an intermediate velocity field. Then the mean velocity field is projected onto a space where the continuity for the mean velocity is satisfied. In this approach, a Poisson equation is solved on the Eulerian grid to obtain the mean pressure field. Then the mean pressure is interpolated at the location of each stochastic Lagrangian particle. The formulation of the Poisson equation avoids the time derivatives of the density (due to convection) as well as second-order spatial derivatives. This in turn eliminates the major sources of instability in the presence of stochastic noise that are inherent in particle-based PDF methods. The convergence of the algorithm (in the non-turbulent case) is investigated first by the method of manufactured solutions. Then the algorithm is applied to a one-dimensional turbulent premixed flame in order to assess the accuracy and convergence of the method in the case of turbulent combustion. As a part of this work, we also apply the algorithm to a more realistic flow, namely a transient turbulent reacting jet, in order to assess the performance of the method.  相似文献   

8.
A general interface tracking method based on the phase-field equation is presented. The zero phase-field contour is used to implicitly track the sharp interface on a fixed grid. The phase-field propagation equation is derived from an interface advection equation by expressing the interface normal and curvature in terms of a hyperbolic tangent phase-field profile across the interface. In addition to normal interface motion driven by a given interface speed or by interface curvature, interface advection by an arbitrary external velocity field is also considered. In the absence of curvature-driven interface motion, a previously developed counter term is used in the phase-field equation to cancel out such motion. Various modifications of the phase-field equation, including nonlinear preconditioning, are also investigated. The accuracy of the present method is demonstrated in several numerical examples for a variety of interface motions and shapes that include singularities, such as sharp corners and topology changes. Good convergence with respect to the grid spacing is obtained. Mass conservation is achieved without the use of separate re-initialization schemes or Lagrangian marker particles. Similarities with and differences to other interface tracking approaches are emphasized.  相似文献   

9.
反常扩散与分数阶对流-扩散方程   总被引:6,自引:0,他引:6       下载免费PDF全文
常福宣  陈进  黄薇 《物理学报》2005,54(3):1113-1117
反常扩散现象在自然界和社会系统中广泛存在.考虑了扩散过程的时间相关和时空相关性,用非局域性的处理方法,在传统的二阶对流 扩散方程基础上,得到了分数阶对流 扩散方程,以此方程来描述反常扩散.在此方程中,弥散项和对时间的导数为分数阶导数所代替.由此分数阶对流 扩散方程,对传统的费克扩散定律进行推广,得到了广义的分数费克扩散定律,分数费克扩散定律说明某时刻空间中某点的流量不仅与其领域内的浓度梯度有关,而且与整个空间中其他不同点的粒子浓度、浓度变化的历史,甚至初始时刻的浓度有关.讨论了方程的解——分数稳定分布,并由此说明了扩散运动的平均平方位移是运移时间的非线性函数. 关键词: 扩散 分数阶微积分 稳定分布(Lévy分布) 费克扩散定律  相似文献   

10.
Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming   总被引:1,自引:0,他引:1  
We present a 2D- and 3D-lattice Boltzmann model for the treatment of free surface flows including gas diffusion. Interface advection and related boundary conditions are based on the idea of the lattice Boltzmann equation. The fluid dynamic boundary conditions are approximated by using the mass and momentum fluxes across the interface, which do not require explicit calculation of gradients. A similar procedure is applied to fulfill the diffusion boundary condition. Simple verification tests demonstrate the correctness of the algorithms. 2D- and 3D-foam evolution examples demonstrate the potential of the method.  相似文献   

11.
In this paper, we unify advection and diffusion into a single hyperbolic system by extending the first-order system approach introduced for the diffusion equation [J. Comput. Phys., 227 (2007) 315–352] to the advection–diffusion equation. Specifically, we construct a unified hyperbolic advection–diffusion system by expressing the diffusion term as a first-order hyperbolic system and simply adding the advection term to it. Naturally then, we develop upwind schemes for this entire   system; there is thus no need to develop two different schemes, i.e., advection and diffusion schemes. We show that numerical schemes constructed in this way can be automatically uniformly accurate, allow O(h)O(h) time step, and compute the solution gradients (viscous stresses/heat fluxes for the Navier–Stokes equations) simultaneously to the same order of accuracy as the main variable, for all Reynolds numbers. We present numerical results for boundary-layer type problems on non-uniform grids in one dimension and irregular triangular grids in two dimensions to demonstrate various remarkable advantages of the proposed approach. In particular, we show that the schemes solving the first-order advection–diffusion system give a tremendous speed-up in CPU time over traditional scalar schemes despite the additional cost of carrying extra variables and solving equations for them. We conclude the paper with discussions on further developments to come.  相似文献   

12.
A new particle method is presented for the numerical simulation of compressible inviscid gas flows, through procedures which involve relatively small modifications to an existing direct simulation Monte Carlo (DSMC) algorithm. Implementation steps are outlined for simulations involving various grid geometries and for gas mixtures comprising an arbitrary number of species. The proposed method is compared with other numerical schemes through a series of one-dimensional and two-dimensional test cases, and is shown to provide a significant reduction in both artificial diffusion and statistical scatter effects relative to existing DSMC-based equilibrium particle methods.  相似文献   

13.
A volume penalization method for imposing homogeneous Neumann boundary conditions in advection–diffusion equations is presented. Thus complex geometries which even may vary in time can be treated efficiently using discretizations on a Cartesian grid. A mathematical analysis of the method is conducted first for the one-dimensional heat equation which yields estimates of the penalization error. The results are then confirmed numerically in one and two space dimensions. Simulations of two-dimensional incompressible flows with passive scalars using a classical Fourier pseudo-spectral method validate the approach for moving obstacles. The potential of the method for real world applications is illustrated by simulating a simplified dynamical mixer where for the fluid flow and the scalar transport no-slip and no-flux boundary conditions are imposed, respectively.  相似文献   

14.
We present a new three-dimensional hybrid level set (LS) and volume of fluid (VOF) method for free surface flow simulations on tetrahedral grids. At each time step, we evolve both the level set function and the volume fraction. The level set function is evolved by solving the level set advection equation using a second-order characteristic based finite volume method. The volume fraction advection is performed using a bounded compressive normalized variable diagram (NVD) based scheme. The interface is reconstructed based on both the level set and the volume fraction information. The novelty of the method lies in that we use an analytic method for finding the intercepts on tetrahedral grids, which makes interface reconstruction efficient and conserves volume of fluid exactly. Furthermore, the advection of volume fraction makes use of the NVD concept and switches between different high resolution differencing schemes to yield a bounded scalar field, and to preserve both smoothness and sharp definition of the interface. The method is coupled to a well validated finite volume based Navier–Stokes incompressible flow solver. The code validation shows that our method can be employed to resolve complex interface changes efficiently and accurately. In addition, the centroid and intercept data available as a by-product of the proposed interface reconstruction scheme can be used directly in near-interface sub-grid models in large eddy simulation.  相似文献   

15.
In this work we introduce PRIN-3D (PRoto-code for Internal flows modeled by Navier-Stokes equations in 3-Dimensions), a new high level algebraic language (Matlab$^®$) based code, by discussing some fundamental aspects regarding its basic solving kernel and by describing the design of an innovative advection scheme. The main focus was on designing a memory and computationally efficient code that, due to the typical conciseness of the Matlab coding language, could allow for fast and effective implementation of new models or algorithms. Innovative numerical methods are discussed in the paper. The pressure equation is derived with a quasi-segregation technique leading to an iterative scheme obtained within the framework of a global preconditioning procedure. Different levels of parallelization are obtainable by exploiting special pressure variable ordering patterns that lead to a block-structured Poisson-like matrix. Moreover, the new advection scheme has the potential of a controllable artificial diffusivity. Preliminary results are shown including a fully three-dimensional internal laminar flow evolving in a relatively complex geometry and a 3D methane-air flame simulated with the aid of libraries based on the Flamelet model.  相似文献   

16.
We present a fourth-order finite-volume algorithm in space and time for low Mach number reacting flow with detailed kinetics and transport. Our temporal integration scheme is based on a Multi-Implicit Spectral Deferred Correction (MISDC) strategy that iteratively couples advection, diffusion, and reactions evolving subject to a constraint. Our new approach overcomes a stability limitation of our previous second-order method encountered when trying to incorporate higher-order polynomial representations of the solution in time to increase accuracy. We have developed a new iterative scheme that naturally fits within our MISDC framework and allows us to conserve mass and energy while simultaneously satisfying the equation of state. We analyse the conditions for which the iterative schemes are guaranteed to converge to the fixed point solution. We present numerical examples illustrating the performance of the new method on premixed hydrogen, methane, and dimethyl ether flames.  相似文献   

17.
This work presents a three-dimensional finite-element algorithm, based on the phase-field model, for computing interfacial flows of Newtonian and complex fluids. A 3D adaptive meshing scheme produces fine grid covering the interface and coarse mesh in the bulk. It is key to accurate resolution of the interface at manageable computational costs. The coupled Navier–Stokes and Cahn–Hilliard equations, plus the constitutive equation for non-Newtonian fluids, are solved using second-order implicit time stepping. Within each time step, Newton iteration is used to handle the nonlinearity, and the linear algebraic system is solved by preconditioned Krylov methods. The phase-field model, with a physically diffuse interface, affords the method several advantages in computing interfacial dynamics. One is the ease in simulating topological changes such as interfacial rupture and coalescence. Another is the capability of computing contact line motion without invoking ad hoc slip conditions. As validation of the 3D numerical scheme, we have computed drop deformation in an elongational flow, relaxation of a deformed drop to the spherical shape, and drop spreading on a partially wetting substrate. The results are compared with numerical and experimental results in the literature as well as our own axisymmetric computations where appropriate. Excellent agreement is achieved provided that the 3D interface is adequately resolved by using a sufficiently thin diffuse interface and refined grid. Since our model involves several coupled partial differential equations and we use a fully implicit scheme, the matrix inversion requires a large memory. This puts a limit on the scale of problems that can be simulated in 3D, especially for viscoelastic fluids.  相似文献   

18.
In the so-called Spitzer–Härm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer–Härm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.  相似文献   

19.
针对惯性约束聚变领域需要求解的含强间断导热系数的扩散方程,借鉴各向异性导热的思想,给出了一种导热系数定义在网格节点的支撑算子改进格式。改进后的方法保留了支撑算子格式的算子相容性优点。数值算例表明,新方法可以很好地处理含强间断和强非线性的热扩散问题,计算结果保持较高的精度,适合于辐射流体力学问题的模拟。  相似文献   

20.
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号