首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用受激布里渊散射获得皮秒激光脉冲   总被引:2,自引:1,他引:1       下载免费PDF全文
 采用两级布里渊结构压缩8ns的Nd:YAG激光,研究了基频光和倍频光的受激布里渊散射(SBS)压缩过程。实验中采用四氯化碳作为SBS介质,经第一级双池SBS压缩后,获得了1.5ns左右的Stokes 脉冲;第二级采用单池SBS压缩,分别使用基频光和倍频光作为泵浦光,获得了最短为60ps 的Stokes脉冲。实验证明,在一定条件下,利用SBS压缩脉宽可以获得比介质的声子寿命更短的脉冲。  相似文献   

2.
抽运光参数对受激布里渊散射的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
受激布里渊散射(SBS)系统中,具有一定带宽的抽运激光中会含有一定比例的Stokes散射光成分,此Stokes散射光成分经SBS介质后表面反射后,将形成种子光与抽运光联合入射,构成自种子光式SBS放大器.通过数值求解此SBS放大器型耦合波方程组,探讨了抽运光脉冲中所含Stokes散射光成分的比例、抽运激光波长、抽运光能量大小、入射的聚焦高斯光脉冲脉宽、相互作用时间等激光参数对SBS特征参数(Stokes散射光脉冲波形、材料内部最大应力的时间演化及空间分布、脉宽压缩效果、能量提取效率及Stokes散射光的共轭保真度)的影响.同时发现,SBS过程中产生的超声应力不仅会对SBS介质前表面造成破坏,还可能对焦点附近造成破坏;调整各激光参数还会使焦点附近优于前表面先破坏.数值模拟中采用的抽运光是聚焦高斯光束. 关键词: 受激布里渊散射 斯托克斯散射光 冲击应力 能量反射率  相似文献   

3.
从耦合波理论出发,采用纵向受激布里渊散射(SBS)模型,通过时域有限差分法数值求解了瞬态SBS耦合波方程组,得到了泵浦光、Stokes光强度及声波产生应力随时间的分布;研究了在三种常见波长激光(基频、倍频和三倍频)作用下SBS效应的发展过程及其对光学材料损伤过程的影响。结果表明:种子光作用主要体现在SBS起振阶段,一旦进入稳态阶段,Stokes光强及应力发展的最大值、稳态值依赖于泵浦光的大小;在相同脉冲宽度下,激光波长越短,SBS发生越早,发展越快,更易造成光学元件的力学损伤;三倍频激光产生最大应力为基频光产生最大应力的100倍,且相比于倍频激光,产生最大应力的时刻要提前15ns。  相似文献   

4.
 提出了时间上串行的多路激光脉冲通过受激布里渊散射(SBS)池进行组束的方法,并对其进行了数值模拟研究。利用6束每束能量为45J的KrF激光进行组束, 可获得能量为141.89J,脉宽为670ps的Stokes输出光。根据模拟结果设计出了时间上串行的SBS激光组束的两个方案, 对其进行了讨论。数值模拟还发现在介质的增益系数更大、声子寿命更短的情况下,输出激光脉冲的脉宽可以压缩得更窄。  相似文献   

5.
光学透明材料中瞬态SBS过程的数值研究   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了描述噪声起振和Stokes种子光辅助起振的SBS(受激布里渊散射)理论模型,利用变步长有限差分方法数值求解了一维瞬态后向SBS耦合波方程组,得到了抽运光和散射光光强以及介质密度变化量的时空分布;研究了Stokes激光场对SBS反射率以及发生阈值的影响,发现Stokes种子光的存在大大减短了SBS过程的起振时间,并且在抽运光脉冲宽度固定的情况下使SBS的发生阈值大幅度降低;最后,探讨了瞬态受激布里渊过程对光学材料破坏的可能性并对今后的工作进行了展望. 关键词: 光学透明材料 受激布里渊散射 斯托克斯种子光 反射率  相似文献   

6.
反射光中Stokes成分对受激布里渊散射过程的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
区别于传统的受激布里渊散射(SBS)发生器和放大器,提出了一种新型的SBS模型:自供种子光模型(self stokes seeding,SSS). 通过对抽运光波形函数的傅里叶变换得到了Stokes成分在抽运光中所占的比例,即Stokes能量比. 考虑SSS效应,数值求解了SSS耦合波方程组,得到了SBS反射率的时间演变形式,理论研究发现,当抽运光正入射到平板样品上时,反射光中的Stokes成分极大地促进了SBS起振过程,其结果相当于反向注入一定强度的种子光,而Stokes能量比的大小决定了SBS过程起振 关键词: 光学材料 受激布里渊散射 傅里叶分析 斯托克斯种子光  相似文献   

7.
光纤移频分布式布里渊光纤传感技术   总被引:1,自引:0,他引:1  
黄民双  黄军芬 《光子学报》2011,(9):1428-1432
提出了一种利用布里渊光纤环形腔移频技术实现分布式光纤布里渊传感的方法.该方法基于布里渊光时域分析法原理,将一束单纵模运转激光器输出的激光分为两束;一束光入射布里渊光纤环形腔中产生窄线宽的受激布里渊散射光作为斯托克斯光,另一束光经过低频相位调制后作为泵浦光;斯托克斯光和泵浦光分别相向入射进入传感光纤,通过测量布里渊谱得到...  相似文献   

8.
锁模激光脉冲串放大过程中的整形控制   总被引:3,自引:1,他引:2       下载免费PDF全文
 为了获得具有特殊要求的驱动激光,设计了一套以Nd:YVO4锁模激光器为种子光,用二极管激光器泵浦的Nd:YAG放大系统进行放大的激光系统。对放大过程中锁模激光脉冲串因增益饱和造成的脉冲串包络畸变以及对包络的整形控制进行了研究。实验获得能量为24 mJ的基频光,5.7 mJ的倍频光,0.608 mJ的紫外四倍频光;通过脉冲串整形控制,实现了包络顶部平整的紫外超短脉冲串输出,满足了光阴极注入器对驱动激光的特殊需求。  相似文献   

9.
为了获得高SBS脉冲波形保真度, 提出一种注入斯托克斯种子光的SBS产生池.理论和实验研究均表明:SBS脉宽随着种子光光强的增强而增宽.实验获得约90%的最高的脉冲波形保真度  相似文献   

10.
后向受激布里渊散射诱导的光学材料破坏机理研究   总被引:8,自引:8,他引:0       下载免费PDF全文
 区别于传统的受激布里渊散射(SBS)发生器和放大器,提出了一种新型的SBS模型:自供种子光模型 (self Stokes seeding,SSS)。数值求解了SBS耦合波方程组,得到了SBS诱导应力的时空分布。基于SSS建立了高功率激光辐照下光学材料破坏阈值的计算模型,研究了SBS破坏阈值与激光脉宽以及作用区长度的关系。研究发现,SBS作为一种破坏机制,表现为前表面破坏,且破坏阈值与激光脉宽以及作用区长度均成反比。  相似文献   

11.
朱学华  吕志伟  王雨雷 《中国物理 B》2012,21(7):74205-074205
A new method for measuring the threshold of stimulated Brillouin scattering (SBS) based on the generation location of a Stokes beam is proposed for the first time to our knowledge. The length of the medium cell is selected to be longer than the free gain length of pump pulses in the Brillouin medium. The reflected light from a certain mirror in front of the medium cell is chosen as the reference beam, and the SBS threshold is measured by the "jump" of the delay between the Stokes beam and the reference beam. An 8-ns Q-switched single-longitudinal-mode pulse is used as the pump and the typical SBS medium FC-72 is selected as the nonlinear medium in our experiment. The SBS threshold intensity is measured to be 173-178 mW/cm 2 , which is consistent with existing results measured with the transmitted energy limiting method.  相似文献   

12.
吕月兰  董永康  吕志伟 《物理学报》2006,55(10):5247-5251
数值模拟了种子场诱导受激布里渊散射光限幅过程的限幅输出波形特性.得到利用种子场控制限幅脉冲波形的规律:选取种子场脉冲宽度为抽运脉冲宽度的五倍,抽运脉冲相对于种子脉冲的延迟时间控制在与抽运脉冲宽度相当时,限幅输出波形最佳.限幅输出波形同时受抽运光功率影响,随抽运能量的增加,限幅脉冲功率不断下降,直至趋于0. 关键词: 受激布里渊散射 限幅输出波形 注入种子  相似文献   

13.
高玮  吕志伟  何伟明  董永康 《物理学报》2008,57(4):2248-2252
采用脉冲宽度为7.2 ns的种子光注入式倍频Nd:YAG脉冲激光器,以CS2为放大介质,实验并理论研究了水中受激布里渊散射微弱Stokes光的信号增益随延迟时间、放大器池长、抽运光能量的变化规律. 结果表明,当抽运光脉冲相对信号光脉冲延迟进入放大器,且延迟时间为脉冲宽度的一半,抽运光能量略低于介质受激布里渊散射阈值,选择合适的放大器池长可获得最佳的信号增益. 适当选择抽运光能量,亦可实现微弱信号光的线性放大. 实验中采用独立双池放大系统,当水中Stokes信号光的能量为1 pJ时,信 关键词: 布里渊放大器 信号增益 延迟时间 抽运光能量  相似文献   

14.
利用相位共轭镜产生高质量宽度可调脉冲   总被引:5,自引:3,他引:2  
实验研究了双池受激布里渊散射系统中的脉冲压缩。通过简单地改变双池间距可以获得脉宽可调的优质光束,脉宽可调范围依赖于抽运能量。增大抽运能量,脉宽可调范围也相应地增大。对双池受激布里渊散射系统的脉冲波形进行了数值模拟,理论计算结果与实验符合得很好。  相似文献   

15.
丁迎春  吕志伟  何伟明 《物理学报》2002,51(12):2767-2771
利用瞬态包含抽运抽空的受激布里渊散射理论模型对布里渊放大器进行了数值模拟,给出了布里渊放大器中能量提取效率、种子光放大率、种子光脉宽压缩率和抽运光脉宽压缩率随Stokes种子光与抽运光能量比的变化规律,并用实验进行了验证,理论与实验符合得较好 关键词: 布里渊放大器 提取效率 种子光与抽运光能量比  相似文献   

16.
A high-temporal contrast femtosecond Stokes pulse near 1,053 nm is obtained simply without polarizer extinction ratio limitation based on the stimulated Raman frequency shift process in ethanol with an 800-nm femtosecond Ti:sapphire laser as a pump source. By optimizing the incident pump pulse chirp and the ethanol Raman cell length, a clean Stokes pulse near 1,053 nm with a maximum energy of 0.24 mJ is obtained with ~7.5 % conversion efficiency and 0.8 % (rms) energy fluctuation. Compared with the incident pump pulse, the temporal contrast of the Stokes pulse is improved by at least approximately three orders of magnitude.  相似文献   

17.
报道了三倍频脉冲Nd∶YAG激光(355 nm)在两种不同带宽模式下抽运氧气中受激拉曼散射(SRS)和受激布里渊散射(SBS)的实验研究。在宽带(约1 cm-1)抽运模式下,只测到了前向受激拉曼散射,而没有观察到后向散射,其一级和二级斯托克斯最大能量转换效率可达22%和8%。在窄带(约0.003 cm-1)模式下,前向、后向受激拉曼散射和受激布里渊散射都测量到了,但大部分抽运能量都转换到受激布里渊散射,其转换效率可达67%。测量了两种带宽模式下各散射组分在它们最佳转换时的波形;窄带情况下后向受激拉曼散射和受激布里渊散射的脉宽分别可压窄至1.5 ns和2.3 ns,不到抽运脉宽的三分之一,使得受激布里渊散射峰值功率可大大高于抽运功率。对氧气中前向、后向受激拉曼散射和受激布里渊散射之间的竞争进行了讨论。  相似文献   

18.
三倍频Nd:YAG激光抽运氧气中的受激拉曼和布里渊散射   总被引:1,自引:1,他引:0  
报道了三倍频脉冲Nd:YAG激光(355nm)在两种不同带宽模式下抽运氧气中受激拉曼散射(SRS)和受激布里渊散射(SBS)的实验研究。在宽带(约1cm^-1)抽运模式下,只测到了前向受激拉曼散射,而没有观察到后向散射,其一级和二级斯托克斯最大能量转换效率可达22%和8%。在窄带(约0.003cm^-1)模式下,前向、后向受激拉曼散射和受激布里渊散射都测量到了,但大部分抽运能量都转换到受激布里渊散射,其转换效率可达67%。测量了两种带宽模式下各散射组分在它们最佳转换时的波形;窄带情况下后向受激拉曼散射和受激布里渊散射的脉宽分别可压窄至1.5ns和2.3ns,不到抽运脉宽的三分之一,使得受激布里渊散射峰值功率可大大高于抽运功率。对氧气中前向、后向受激拉曼散射和受激布里渊散射之间的竞争进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号