首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
利用实验室烟雾腔,在不同的实验条件下研究了由羟基启动的三甲苯光氧化反应所产生的二次有机气溶胶,采用激光解吸附技术和气溶胶飞行时间质谱仪测量了产物的化学组分和粒子的粒径分布。结果表明:随着反应物三甲苯浓度的增加,所生成的二次有机气溶胶粒子数量增多;随着反应时间的延长,生成的粒子数目也增加,但是反应到一段时间后,检测到的粒子数目几乎保持不变;光照强度的增加有利于二次有机气溶胶的生成;通过对产物的化学成分分析,说明了在二次有机光氧化产物中粒子相产物主要是芳香的环保留产物、非芳香环保留产物和环断裂产物。  相似文献   

2.
OH自由基启动苯系物光氧化形成的二次有机气溶胶能够影响气候变化,降低大气能见度,危害人类健康。我们实验室自行研制的气溶胶飞行时间质谱仪能够用于二次有机气溶胶的实时检测研究。该仪器在检测过程中产生大量的实验数据,对这些数据快速、自动处理并提取有价值的信息是整机系统的关键之一。本文介绍模糊聚类算法在苯系物二次有机气溶胶单粒子聚类分析中的成功运用。利用该算法对OH自由基启动1,3,5-三甲苯光氧化形成的二次有机气溶胶单粒子质谱数据进行了聚类分析,在得到的五个聚类中包含了芳香醛、酚类化合物、硝基酚和羧酸等重要的光氧化产物,为研究苯系物光氧化机理提供了新的信息。  相似文献   

3.
为了从本质上认识和了解大气氧化反应进程以及二次有机气溶胶的形成机制,设计并搭建了一套实验室模拟烟雾箱系统.将质子转移反应质谱、同步辐射光电离质谱及气溶胶激光飞行时间质谱等特色质谱检测系统与烟雾箱结合,用于大气氧化反应气相和粒子相产物的定量与定性分析.通过一系列表征实验获得了该系统的基本参数,如烟雾箱内温度和光强特征,气体化合物和颗粒物的壁损耗速率,零空气的背景反应性及实验结果的可重复性.臭氧氧化α-蒎烯定量化实验和OH启动异戊二烯光氧化反应的定性检测结果进一步表明了该系统能够满足大气化学反应过程中气相和粒子相化学成分的定性分析及二次有机气溶胶的定量化研究的需要.  相似文献   

4.
采用M06-2X和CCSD(T)高阶量化计算和传统过渡态理论研究硫酸催化乙二醛气体相水化反应.对HCOCHO+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O...H2SO4和HCOCHO+H2O+H2SO4五个路径的反应机理和速率常数进行了研究.计算结果表明硫酸具有较强的催化能力,能显著减小乙二醛水化反应的能垒,在CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd)理论水平,当硫酸分子参与乙二醛水化反应时,反应能垒从37.15 kcal/mol减少至7.08 kcal/mol.在室温条件下,硫酸催化乙二醛水化反应的反应速率1.34×10-11 cm3/(molecule.s),是等量水分子参与乙二醛水化反应的速率的1012倍,大于乙二醛与OH自由基反应的反应速率1.10×10-11 cm3/(molecule.s).这表明大气条件下,硫酸催化乙二醛水化反应可以发生,同乙二醛与OH自由基反应相竞争.  相似文献   

5.
基于室内烟雾箱实验平台,研究了在有机种子气溶胶下,来自OH启动异戊二烯光氧化反应形成的二次有机气溶胶的动力学. 探究了二次有机气溶胶的粒谱分布分别与来自室内大气中痕量碳氢化合物光氧化反应产生的种子颗粒物浓度以及前体物异戊二烯浓度的依赖关系. 研究结果表明在高浓度种子气溶胶和低浓度异戊二烯条件下(对应于典型城市大气条件),光化学反应形成的二次有机产物凝聚到种子颗粒物表面而造成的颗粒物增长起主导作用;而在低浓度种子气溶胶和相对高浓度异戊二烯条件下(对应于典型偏远地区大气条件),二次有机气溶胶粒谱分布出现双模式结构,分别对应于来自均相成核的新粒子生成和二次有机产物在种子颗粒物上的凝聚增长. 此外,还研究了有机种子颗粒物浓度对二次有机气溶胶形成的影响,评估了在不同种子浓度下二次有机气溶胶粒谱分布的演化和相应新粒子的形成速率.  相似文献   

6.
利用气溶胶激光飞行时间质谱仪激光解吸电离技术开展了苯水相二次有机气溶胶在线测量研究。实验结果表明,苯水相光氧化反应形成的二次有机气溶胶粒子粒径小于1.0μm,激光解吸电离质谱中存在醛类m/z 29(CHO~+)、57(CHOCO~+),羧酸m/z 44(COO~+),苯环m/z 77(C_6H~+_5)、65(C_5H~+_5)和酚类化合物m/z 93(C_6H_5O~+)特征裂解碎片峰。醛类、羧酸和酚类化合物是苯水相SOA粒子的化学组分,各类型组分含量大小关系为:醛类化合羧酸酚类化合物。气溶胶激光飞行时间质谱仪激光解吸电离技术能够用于水相SOA粒子化学组分的在线测量,可用于水相SOA形成机理和过程的研究。  相似文献   

7.
乙二醛在沙尘颗粒物表面吸附与转化的红外光谱研究   总被引:1,自引:0,他引:1  
乙二醛是大气中一种重要挥发性有机物.它在大气中气相、水相及二次无机酸性颗粒物表面反应均可生成二次有机气溶胶(SOA).然而乙二醛与沙尘非均相反应研究却未见报道.本研究选取二氧化硅(SiO2)和三氧化二铝(α-Al2O3)颗粒作为实际沙尘模型,探讨了乙二醛与沙尘颗粒非均相吸附与转化机理.利用透射傅里叶变换红外光谱(T-FTIR)原位跟踪反应进程,再结合色谱和质谱分析了反应产物.结果发现,在无光照和无氧化剂参与条件下,乙二醛在以上两种沙尘组分颗粒表面吸附后均生成了低聚物,在α-Al2O3上还能生成有机酸;水汽能促进颗粒对乙二醛摄取,并有利于低聚物生成,但会抑制有机酸生成.这些发现对于认识大气乙二醛与沙尘非均相反应生成SOA具有重要意义.  相似文献   

8.
在燃烧或大气化学多通道反应中,理解不同产物之间的产品分支比与反应的总速率,对这类基元反应同样重要. 在CCSD(T)/CBS/B3LYP/aug-cc-pVDZ理论水平上,计算所有氘代烷基卤化物CD3CH2F物种的基态势能面. 在CD3CH2F的解离反应中,C-F键解离反应与分子(HF、DF、H2、D2与HD)消除反应存在着争议. 本文使用RRKM方法计算各个步骤的速率常数,并使用稳态方法计算解离产物的相对产物分支比. 在不同的能量下,RRKM方法预测CD3CH2F的1,2-消除DF或HF的主要通道是通过四中心过渡态消除,而1,1-消除D2或H2的主要通道是通过三中心过渡态消除. 在266、248和193 nm光解时,主产物CD2CH2+DF分支比分别为96.57%、91.47%和48.52%;然而,在157 nm光解时,产物分支比计算为16.11%. 基于这些过渡态结构和能量,提出了以下光解离机制:在266、248和193 nm,CD3CH2F→吸收光子→TS5→形成产物→CD2CH2+DF;在157 nm,CD3CH2F→吸收光子→D/F交換的TS1→CDH2CDF→H/F交换的TS2→CHD2CHDF→形成产物CHD2+CHDF.  相似文献   

9.
采用等体积浸渍法制备了一系列负载型Ni基催化剂,利用XRD、H2-TPR、NH3-TPD 等技术表征了催化剂的理化特性,考察了载体(CMK-3、SiO2ZrO2、MgO、Al2O3)、助剂(Cu、Ce、Fe)对Ni基催化剂理化特性的影响,测试了230 oC、0.1 MPa冷压下催化剂对邻甲酚原位加氢反应的性能.结果表明,在负载型镍基催化剂作用下,甲醇水相重整制氢反应可以与邻甲酚的原位加氢反应相耦合;以CMK-3为载体的催化剂活性明显优于其他三种载体,邻甲酚的转化率为45.35%;助剂的添加对催化剂性能影响显著,Fe 的引入使原位加氢体系的转化率降至40.49%,助剂Ce、Cu的加入提高了Ni/CMK-3催化剂的原位加氢反应性能,转化率分别提高至64.6%、66.8%,Cu的添加改变了产物的分布,在产物中出现了新产物甲苯;同时探讨原位加氢反应路径及反应机理.  相似文献   

10.
由D-木糖出发,经过杂D-A 反应、Henry反应、合成了中间体(1αS,2αR, 3αS,4S,7E,9αR,10αR)-1,2∶9,10-O-二异丙叉基-3-硝甲基-5,6-二脱氧-7-烯-4-氧化-1,4∶7,10-二呋喃-4,8-吡喃糖(化合物1),再经催化氢化,立体选择性地得到了含高碳糖结构片断的β-氨基醇(1αS,2αR, 3αS,4S,7αS,8βR,9αR,10αR)-1,2∶9,10-O-二异丙叉基-3-氨甲基-5,6-二脱氧-4-氧化-1,4∶7,10-二呋喃-4,8-吡喃糖(化合物2), 通过DEPT和1H-1H COSY,HMQC,HMBC等2D NMR 技术对化合物1的1H和13C NMR数据进行了全归属和较详细的解析并探讨了其ESI-MS/MS质谱裂解规律. 同时得到化合物1的还原产物化合物2的1H,13C NMR归属.  相似文献   

11.
The mass spectrometer, is a powerful tool to identify species and investigate reactions in the gas phase. In this work, the mechanism of aerosol assisted chemical vapor deposition (AACVD) of Zn(O,S) films prepared from H2S and zinc acetylacetonate (Zn(acac)2) precursor solutions is elucidated by mass spectrometry. The thermochemical behavior of Zn(acac)2 is investigated by characterizing the influence of the solvent (H2O or ethanol), the pH value of the precursor solution and the effect of the reactant H2S, and by tracking gaseous intermediate products using mass spectrometry. Based on these results, a proton-promoted thermolysis mechanism for the AACVD Zn(O,S) film formation is then proposed, which is initiated by the hydrolysis with H2O as the first stage, followed either by the rearrangement with an intramolecular proton or by the reaction with an extramolecular proton to produce ZnO or Zn(O,S). A real time mass tracking of the AACVD process reveals that only an adequate amount of H2S promotes the chemical gas-phase decomposition and sulfurization process, while an excess of H2S depletes the gaseous Zn(acac)2 concentration and consequently reduces the film growth rate. The knowledge of the thermal decomposition process helps to optimize synthesis conditions and to adjust film properties to meet the requirement of the application in chalcopyrite or kesterite thin film solar cells.  相似文献   

12.
This study presents a novel exposure protocol for synthesized nanoparticles (NPs). NPs were synthesized in gas phase by thermal decomposition of metal alkoxide vapors in a laminar flow reactor. The exposure protocol was used to estimate the deposition fraction of titanium dioxide (TiO2) NPs to mice lung. The experiments were conducted at aerosol mass concentrations of 0.8, 7.2, 10.0, and 28.5 mg m?3. The means of aerosol geometric mobility diameter and aerodynamic diameter were 80 and 124 nm, and the geometric standard deviations were 1.8 and 1.7, respectively. The effective density of the particles was approximately from 1.5 to 1.7 g cm?3. Particle concentration varied from 4 × 105 cm?3 at mass concentrations of 0.8 mg m?3 to 12 × 106 cm?3 at 28.5 mg m?3. Particle phase structures were 74% of anatase and 26% of brookite with respective crystallite sized of 41 and 6 nm. The brookite crystallites were approximately 100 times the size of the anatase crystallites. The TiO2 particles were porous and highly agglomerated, with a mean primary particle size of 21 nm. The specific surface area of TiO2 powder was 61 m2 g?1. We defined mice respiratory minute volume (RMV) value during exposure to TiO2 aerosol. Both TiO2 particulate matter and gaseous by-products affected respiratory parameters. The RMV values were used to quantify the deposition fraction of TiO2 matter by using two different methods. According to individual samples, the deposition fraction was 8% on an average, and when defined from aerosol mass concentration series, it was 7%. These results show that the exposure protocol can be used to study toxicological effects of synthesized NPs.  相似文献   

13.
Methanol has been considered as a potential renewable liquid fuel and blending it with gasoline and diesel is an effective way to reduce greenhouse gas emissions from the transport sector. To understand the mixing effect of methanol on the formation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs), the fuel-rich oxidation of toluene with and without methanol was studied using a flow reactor at atmospheric pressure, temperatures from 1050 to 1350 K, equivalence ratio of 9.0, and residence time of 1.2 s. The blending ratio of methanol was varied as 0% and 50% on a molar basis. Gas chromatograph mass spectrometer was employed to identify and quantify PAHs and OPAHs in gaseous products. A kinetic model on PAH growth up to five ring structures was used to investigate the blending effect on PAH and OPAH formation. Both experiment and modeling showed that PAH and OPAH production at lower temperatures was unexpectedly promoted in toluene/methanol oxidation compared with toluene oxidation, while their production in toluene oxidation was identical with or larger than that in toluene/methanol oxidation at elevated temperatures. In methanol oxidation, no PAHs were produced under the current experimental conditions. Kinetic analysis indicated that high methanol reactivity produced several radicals, such as OH, H, and HO2, which promoted toluene reactivity at lower temperatures, resulting in the enlargement of PAH and OPAH formation in toluene/methanol oxidation compared to neat toluene oxidation. When the temperature was increased, the effect of methanol blending was diminished based on the kinetic analysis. These results suggest that oxygenated fuels do not necessarily reduce PAH production, but promote it under some conditions.  相似文献   

14.
A novel wet electrostatic precipitator (WESP) is designed for effective control of fine aerosol from humid gases. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of their own space charge. The new precipitator is characterized by high gas velocity in the ionizing stage. Tests were carried out for gas with (NH4)2SO4, HCl and (NH4)Cl aerosol at particle number concentration up to 5·107#/cm3 and mass concentration 10–1000 mg/Nm3. For test conditions one-field WESP ensures mass collection efficiency 90–97% and two-field electrostatic precipitator up to 99%.  相似文献   

15.
In the present study, a combination of the stable carbon isotope ratio (13C/12C) with radiocarbon data (14C) allowed us to perform the aerosol source apportionment. Filter samples of PM1 were collected during the warm and cold periods in rural and urban sites in Lithuania. The 14C/12C ratio of total carbon (TC) was measured using the single stage accelerator mass spectrometer quantifying of fossil and non-fossil derived aerosol emissions. The δ13C value was measured using an elemental analyser interfaced with an isotope ratio mass spectrometer. We have found that the highest fraction of contemporary carbon (fc?=?0.82) was measured during a warm period in a rural location. A higher fraction of fossil fuel-derived carbon was observed for air masses transported from highly industrialized Western European regions during both seasons. Isotope mass balance calculations revealed that the traffic emissions composed 15 and 25?% in rural and urban sites, respectively, and did not change during either season. Input from coal-derived aerosol particles was estimated to be 15?% at an urban site during the cold period. The combination of the stable carbon isotope ratio with the radiocarbon data allowed us to distinguish coal, liquid fossil fuel combustion, and non-fossil derived aerosol particle emissions.  相似文献   

16.
Tribological properties and the decomposition process of ionic liquids (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide) on a nascent surface of bearing steel 52100 were investigated by a ball-on-disk friction tester in a vacuum chamber equipped with a quadrupole mass spectrometer (Q-MS). Ionic liquids exhibited better tribological properties than synthetic hydrocarbon oil (multialkylated cyclopentane (MAC)) in high vacuum conditions. The induction period for decomposition of MAC was about 10 km, while no obvious gaseous products were observed for ionic liquids even after a sliding distance of 22 km under the same mechanical conditions. The mass spectra indicated that both the anionic and cationic moieties of ionic liquids decomposed on the nascent steel surface during friction processes. The cationic moiety with a longer alkyl chain was more difficult to decompose on the nascent steel surface than that with a shorter alkyl chain. XPS analysis revealed that the tribofilm formed by ionic liquid was mainly composed of FeF2 and FeS, which deactivated the nascent surface. As a result, desorption rate of gaseous products decreased appreciably comparing with MAC. The critical load for the mechanical activation of the decomposition correspondingly increased from 1.1 N of MAC to 8 N of ionic liquids.  相似文献   

17.
A comparative analysis of the uptake NO3 on natural sea salt (NSS) and Dead Sea salt (DSS) is performed using a coated-insert flow reactor coupled to an electron impact ionization mass spectrometer for detecting gas-phase reactants and products. The uptake coefficients are determined by measuring both reactant consumption and gaseous products formation at various concentrations of NO3, from 8 · 1012 to 4 · 1013 cm?3, and water vapor, from 8 · 1012 to 1.6 · 1015 cm?3. It has been established that the uptake on a fresh coating is time-dependent, with the uptake coefficient exponentially varying with time, γ(t) = γ a exp(?t/τ) + γ s , from an initial value to a steady-state value, both of which depends on the type of salt and the concentration of the gaseous reactant but do not depend on [H2O] in this range of water vapor concentrations. The dependence of the coefficient of steady-state uptake of the gaseous reactant is determined as 1/γ s = a + b[NO3]. It is shown that the main primary products of the NO3 uptake on NSS are HCl and Cl ad formed with branching ratios of 1 : 1 and 1 : 2 in the initial and steady-state uptake stages, respectively. For the uptake of NO3 on DSS, the primary products are HCl and Br, formed in proportions of 1 : 0.1 and 1 : 0.006 for the respective uptake stages. Chemical reactions leading to the formation of these products are proposed.  相似文献   

18.
Measurement of Inherent Material Density of Nanoparticle Agglomerates   总被引:1,自引:0,他引:1  
We describe a new technique to measure the size dependent inherent material density of chain agglomerate particles. Measurements were carried out for diesel soot and aluminum/alumina agglomerate particles in the nanometer size range. Transmission electron microscopy was used to measure the volumes of agglomerate particles that were preselected by mass using an aerosol particle mass analyzer. We found that the density of diesel exhaust particles increased from 1.27 to 1.78g/cm3 as particle mobility size increased from 50 to 220nm. When particles are preheated to remove volatile components, the density was 1.77±0.07g/cm3, independent of particle size. The densities measured after heating correspond to the inherent material density of diesel soot. Measurements with aluminum nanoparticles were made downstream of a furnace where aluminum (Al) was converted to alumina (Al2O3). From measurements of inherent material density we were able to infer the extent of reaction, which varied with furnace temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号