首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An implicit solvent model is presented that couples hydrophobic, dispersion, and electrostatic solvation energies by minimizing the system Gibbs free energy with respect to the solvent volume exclusion function. The solvent accessible surface is the output of the theory. The method is illustrated with the solvation of simple solutes on different length scales and captures the sensitivity of hydration to the particular form of the solute-solvent interactions in agreement with recent computer simulations.  相似文献   

2.
We present a theoretical study of ion solvation dynamics in a supercritical solvent. Molecular dynamics simulations show a significant difference between equilibrium and nonequilibrium solvent response functions, especially pronounced at medium and low solvent densities. We propose a simple analytical theory for the nonequilibrium solvation function based on the generalized nonlinear Smoluchowski-Vlasov equation. The theory is shown to be in excellent agreement with simulation over a wide range of supercritical solvent densities.  相似文献   

3.
The electronic absorption spectra of four azo dyes with different substituents (such as Cl, I, OH) are determined at room temperature in twenty-one solvents with different polarities. The electronic transitions of azo dyes are interpreted. Linear solvation energy relationships have been investigated for solvatochromic behaviors and solute-solvent interactions of azo dyes. Linear solvation energy relationships were performed by multiple linear regression analysis using dielectric function, refractive index function and Kamlet-Taft parameters. We have observed that the hydrogen bonding acceptor ability and the induction-dispersive forces of solvent molecules have caused the bathochromic shift in absorption maxima of azo dyes.  相似文献   

4.
From an exact expression for the free energy of a non-uniform fluid mixture a closure approximation for the inhomogeneous direct correlation functions is used to develop a theory of solvation forces in charged fluids based upon non-linear equations for the equilibrium ion number densities. In the limit of point ions, the expressions obtained reduce to those of the Poisson-Boltzmann theory of electrolytes. The numerical results obtained for a restricted primitive model electrolyte are compared with those of earlier work based on linear response theory and Poisson-Boltzmann theory with a simple Stern layer modification. At low electrolyte concentrations the agreement between all three theories is good. But at high electrolyte concentrations the Poisson-Boltzmann theory with a simple Stern layer correction fails to display the oscillations in the solvation force which characterize both the linear and non-linear theories.  相似文献   

5.
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.  相似文献   

6.
Tapas R. Kunor 《Physica A》2009,388(8):1491-1499
We present here molecular dynamics (MD) simulation and integral equation (IE) studies on free energies of solvation of a non-polar solute in a dilute supercritical solvent to estimate the contribution of inhomogeneities in solvent density to the free energy of solvation. The solvation of a Xe-like solute in an Ne-like solvent as well as that of naphthalene in CO2 have been investigated. At state points in the compressible region in the neighborhood of the solvent critical point, we have utilized the IE estimates of free energies to model the ideal situation where local density inhomogeneities would be absent. The difference between the free energies in the presence (as derived from MD simulation) and in the absence (from IE) of local density inhomogeneities was studied as a function of density along an isotherm close to the critical point. Although for low density supercritical solvents, a marked difference is observed, a study of the density dependence of this difference across the critical density does not directly reveal any signature of local density enhancement on the thermodynamics of solvation.  相似文献   

7.
Myong In Oh 《Molecular physics》2019,117(20):2889-2899
ABSTRACT

We explore the solvation patterns of a charged rigid and semi-rigid linear macroion in an aqueous droplet. The solvation patterns are summarised in an empirical ‘phase diagram’ on the parameter space defined by the length of the macroion and its charge density. In the study, we employ molecular dynamics and atomistic modelling. The macroion is represented by a positively charged carbon nanotube. Linear macroion-solvent interactions in droplets are distinct from those of spherical ions because of the interplay among several factors such as the tendency of the solvent to form spherical droplets in order to minimise the surface energy, the constraint on the charge of a spherical droplet imposed by the Rayleigh limit, the solvation energy of the macroion and its length. The combination of all these factors may lead to a variety of solvent distributions along the rigid rod such as asymmetric solvation of the linear macroion, formation of spiky ‘star’-like distribution of solvent, partial wetting of the rod by a droplet. The study provides insight into the solvation of macroions in droplets with applications in electrosprayed macroions and atmospheric aerosols. We also propose a possible path of generating a sequence of nanoparticles of different shapes (spheres, multi-point stars) along a linear macromolecule by exploiting the various solvation patterns.  相似文献   

8.
We present a general analytic method for understanding how specific motions of a classical bath influence the dynamics of quantum-mechanical observables in mixed quantum-classical molecular dynamics simulations. We apply our method and develop expressions for the special case of quantum solvation, allowing us to examine how specific classical solvent motions couple to the equilibrium energy fluctuations and nonequilibrium energy relaxation of a quantum-mechanical solute. As a first application of our formalism, we investigate the motions of classical water underlying the equilibrium and nonequilibrium excited-state solvent response functions of the hydrated electron; the results allow us to explain why the linear response approximation fails for this system.  相似文献   

9.
In this work, molecular dynamic simulation of the mixture of imidazolium based ionic liquids with alcohols is implemented in order to investigate mixing excess properties and some structural and physical properties of the mixture. Excess volumes and enthalpies are evaluated for 11 different mole fractions of ionic liquids at each 0.1, in the range of 0 to 1. Radial distribution function, cohesive energy density, potential of mean force, solvation energy, and diffusion coefficient are reported and analysed. The effects of the cationic alkyl chain length, in comparison with changes of the anions, on these properties are reported. Results reveal that the methanol molecule participates with its hydrophilic characteristics in the mixing process and tends to aggregate around anion part of the ionic liquids, especially in the case of Cl.  相似文献   

10.
We present a microscopic quantum theoretical analysis of the nanoscale superfluid properties of solvating clusters of para-H2 around the linear OCS molecule. Path-integral calculations with N=17 para-H2 molecules, constituting a full solvation shell, show the appearance of a significant superfluid response to rotation around the molecular axis at T=0.15 K. This low-temperature superfluid response is highly anisotropic and drops sharply as the temperature increases to T approximately 0.3 K. These calculations provide definitive theoretical evidence that an anisotropic superfluid state exists for molecular hydrogen in this microscopic solvation layer.  相似文献   

11.
12.
Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device.Among them,vinylene carbonate(VC),fluoroethylene carbonate(FEC),and ethylene sulfite(ES)are the potential organic electrolyte solvents for lithium/sodium battery.However,the quantitative relation and the specific mechanism of these solvents are currently unclear.In this work,density functional theory(DFT)method is employed to study the lithium/sodium ion solvation in solvents of VC,ES,and FEC.We first find that 4VC-Li+,4VC-Na+,4ES-Li+,4ES-Na+,4FEC-Li+,and 4FEC-Na+are the maximum thermodynamic stable solvation complexes.Besides,it is indicated that the innermost solvation shells are consisted of 5VC-Li+/Na+,5ES-Li+/Na+,and 5FEC-Li+/Na+.It is also indicated that the Li+solvation complexes are more stable than Na+complexes.Moreover,infrared and Raman spectrum analysis indicates that the stretching vibration of O=C peak evidently shifts to high frequency with the Li+/Na+concentration reducing in nVC-Li+/Na+and nFEC-Li+/Na+solvation complexes,and the O=C vibration peak frequency in Na+solvation complexes is higher than that of Li+complexes.The S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of the Li+/Na+concentration,the S=O vibration in nES-Na+is higher than that in nES-Li+.The study is meaningful for the design of new-type Li/Na battery electrolytes.  相似文献   

13.
We show that the solvation free energy of a complex molecule such as a protein can be calculated using only four geometrical measures of the molecular structure and corresponding thermodynamical coefficients. We compare results from this morphometric approach to those obtained by an elaborate statistical-mechanical theory in liquid state physics for a large variety of different structures of protein G and find excellent agreement. Since the computational time is drastically reduced, the new approach provides a practical and efficient way for calculating the solvation free energy which can be employed when this quantity has to be calculated for a large number of structures, as in a simulation study of protein folding.  相似文献   

14.
We report free energy barriers for the ground-state dissociation of the guanosinenucleotide anion in solution, employing implicit and explicit solvation models. The latterwas based on the Free Energy Perturbation technique and Monte Carlo simulations. For thelowest-energy structure, both solvation models indicate a solvent-induced transition froma dipole-bound state in the gas phase to a π? valence state in solution. The freebarrier estimates obtained from explicit and implicit solvation are in fair agreement witheach other, although significantly overestimated in comparison to a previously reportedexplicit solvation model based on ab initio molecular dynamics simulations. Accounting forcorrections related to the different DFT functionals used in the present and previousstudies significantly improves the agreement.  相似文献   

15.
李琛  牛美兴  刘鹏  李永方  王敦友 《中国物理 B》2017,26(10):103401-103401
The presence of a solvent interacting with a system brings about qualitative changes from the corresponding gasphase reactions. A solvent can not only change the energetics along the reaction pathway, but also radically alter the reaction mechanism. Here, we investigated the water-induced transition state of the OH~- + CO_2→ HCO_3~- reaction using a multi-level quantum mechanics and molecular mechanics method with an explicit water model. The solvent energy contribution along the reaction pathway has a maximum value which induces the highest energy point on the potential of mean force. The charge transfer from OH~- to CO_2 results in the breaking of the OH~- solvation shell and the forming of the CO_2 solvation shell. The loss of hydrogen bonds in the OH~-solvation shell without being compensated by the formation of hydrogen bonds in the CO_2 solvation shell induces the transition state in the aqueous solution. The calculated free energy reaction barrier at the CCSD(T)/MM level of theory, 11.8 kcal/mol, agrees very well with the experimental value, 12.1 kcal/mol.  相似文献   

16.
From an exact expression for the free energy of a non-uniform classical fluid, due to Saam and Ebner, a closure is used to develop a non-linear theory for the density and solvation force between two planar walls. In the linear limit these expressions reduce to ones used successfully elsewhere. Numerical solution of the equations for a hard sphere fluid shows that while the density profiles predicted by the two theories are markedly different, the solvation forces are similar.  相似文献   

17.
The solvation dynamics of methanol has been investigated using a femtosecond time-resolved fluorescence up-conversion technique. Transient fluorescence spectra of Coumarin 152A dissolved in methanol at different time were reconstructed from the measured fluorescence decays. The Stokes shift was obtained and the solvent response function Sv(t) was fitted using a bimodal function with a fast Gaussian component and a slow bi-exponential component. The Gaussian component was attributed to the effect of free streaming motion of the solvent molecules, whereas the bi-exponential component was caused by the rotational diffusion motion of the solvent molecules. A comparison of our results with reported data was made.  相似文献   

18.
Transient two-dimensional infrared spectroscopy (2D-IR) on a charge transfer model system is used as a nonlinear probe of solvation dynamics. Unlike what is expected in the linear response case, nonequilibrium relaxation and equilibrium spectral diffusion occur on different time scales. Transient 2D-IR spectroscopy is shown to be sensitive to higher order frequency fluctuation correlation functions, and provides evidence for a coupling between commonly observed fast and slow solvation processes.  相似文献   

19.
The scaled particle theory has been applied to calculate the free energy, ΔGsolv, enthalpy, ΔHsolv, and entropy, ΔSsolv of solvation for xylitol in water and in aqueous amino acids (glycine, alanine and valine) at 298.15 K. The solvation energy, enthalpy and entropy of xylitol are expressed in terms of their various ingredients. The results show that the interaction terms contribute favorably to the process of solvation. The results suggest that the cavity formation for accommodation of xylitol molecules in aqueous amino acids is an enthalpy‐dominated process. Furthermore, the investigated parameters indicate that xylitol–amino acid interactions follow the sequence: glycine alanine valine water. The findings of the present work may help to throw light on the role that xylitol can play to stabilize macromolecules like proteins in aqueous solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
在密度泛函理论(DFT)框架下, 应用改进的基本度量理论(MFMT)表达硬球作用对自由能泛函的贡献, 根据统计力学理论结合加权密度近似(WDA)表达偶极作用对自由能泛函的贡献,得到了方势阱偶极流体在平行板间的密度分布表达式, 计算了偶极流体在两平行板间的密度分布, 并探讨了方势阱深度和宽度对体系密度分布的影响. 此外, 通过体系密度分布, 进一步分析了方势阱宽度和深度以及板间尺度与溶剂化力的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号