首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrohydrodynamic investigation has been carried out in a pin-to-plate gas discharge system to clarify the mechanism of repulsive force generation between a pin and plate electrode at corona discharge. Numerical calculations have been conducted in two steps. First, the axi-cylindrical static corona discharge field was calculated with the finite-element method to deduce the Coulombic body force ρ E applied to the air, where ρ is the charge density and E is the electric field, and then the induced ionic wind was calculated with the finite differential method. The calculated pressure distribution on the plate electrode was on the order of 10 Pa which was in good agreement with the measured pressure distribution. The calculated air velocity at the center was several m/s and was confirmed by a time-of-flight experiment and the velocity distribution near the pin electrode also agreed with measurements using a laser Doppler velocimeter. Pressure and wind velocity were increased at high-applied voltage. These results confirm that the ionic wind is the cause of the repulsive force to the pin electrode at the corona discharge.  相似文献   

2.
Discharge current distributions generated underwater by spark discharges from the atmosphere to free water surfaces with conductivities in the range 0.07–10.0 S/m were investigated using a laboratory-scale electrode system consists of a discharge electrode and nine underwater grounding electrodes. Discharge emission on the water surface, which shows significant change with slight increase in conductivity, affects the current distribution in the water. The electric potential of the water surface also changes significantly with slight increase in conductivity. Results of numerical calculations of the underwater discharge current based on the water surface potential agree with the experimental results.  相似文献   

3.
空气中的大气压辉光放电通常因放电易过渡到火花状态而难以产生。在静态大气压空气针-板等离子体发生器中,采用阻容耦合负反馈方法控制等离子体放电发展过程,成功地抑制了辉光放电向火花放电的过渡,产生了稳定的交流辉光放电。研究了电压、电极间距等参数变化对放电的影响。  相似文献   

4.
Although the discomfort or injury associated with whole-body vibration cannot be predicted directly from the power absorbed during exposure to vibration, the absorbed power may contribute to understanding of the biodynamics involved in such responses. From measurements of force and acceleration at the seat, the feet, and the backrest, the power absorbed at these three locations was calculated for subjects sitting in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest while exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s?2 rms) of random fore-and-aft vibration. The power absorbed by the body at the supporting seat surface when there was no backrest showed a peak around 1 Hz and another peak between 3 and 4 Hz. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Foot support influenced both the magnitude and the frequency of the peaks in the absorbed power spectra as well as the total absorbed power. The measurements of absorbed power are consistent with backrests being beneficial during exposure to low frequency fore-and-aft vibration but detrimental with high frequency fore-and-aft vibration.  相似文献   

5.
《Journal of Electrostatics》2006,64(3-4):176-186
An efficient method is proposed for the computation of the electric field strength and of the space-charge density in configurations of at least three ionising and non-ionising electrodes. The physical model is derived under the assumptions commonly accepted for the study of corona fields. The mathematical model makes use of a conformal mapping that converts the actual boundary-free field zone into a rectangular domain with well-defined boundary conditions. The finite-difference method is then used for solving the differential equations that describe the ionic space-charge and electric field distribution. The computational procedure was employed for studying the simple case of the drift zone of the corona discharge generated between a so-called dual electrode and a grounded plate. The dual electrode consisted of an ionising wire (diameter 0.22 mm) located at 20 mm from a tubular metallic support (diameter 25 mm). The computed current–voltage characteristic and current density distribution at the surface of the collector plate were in good agreement with the experimental data obtained for this combined corona–electrostatics electrode arrangement.  相似文献   

6.
The back-discharge is a type of discharge that takes place in the presence of corona discharge and occurs at an electrode covered with a dielectric layer of resistivity higher than about 108 Ω m. Back-discharge can be observed in electrostatic precipitators when dust covering the collection electrode has low conductivity. In this paper, the studies of back-discharge generated in ambient air, in point-to-plane geometry with the plate electrode covered with fly ash are presented. The discharge is characterised in terms of its visual forms, current–voltage characteristics, and light emission spectra. Three forms of back-discharge were investigated: glow discharge, streamers, and low-current back-arc discharge. The current of the back-arc discharge was only a few milliamps. The discharge was stabilised by a high series resistance. It was noted that the voltage of ignition of the back-discharge for negative polarity is lower than for a positive one. Spectroscopic measurements of emission spectra provided information on elements present in the discharge column. The elements present in the fly ash, including toxic metals, can be re-entrained into the gas as particles or can be emitted as ions or neutrals during the discharge, and can decrease the collection efficiency of electrostatic precipitators. These elements were detected in the emission spectra. The effect of the discharge on the fly ash layer was also discussed. It was observed that sinter-like leftovers remain in the dust layer after a back-arc discharge.  相似文献   

7.
To understand a mechanism of spark transients, using a 12-GHz digital oscilloscope, we measured discharge currents due to a finger touch through a hand-held metal bar or a fingertip with an aluminum foil attachment from a charged human body with a charge voltage of 600 V. As a result, we found that the hand-held metal bar and aluminum foil attachment produce a one-shot discharge current with steeply rising time shorter than a 100 ps, while the fingertip without any aluminum foil attachments produces multiple-shot discharge currents with gently rising time larger than a 100 ps and significantly low amplitudes.  相似文献   

8.
The minimum ignition energy (MIE) of hydrogen–air mixture is measured using capacitive spark discharge. First, the effect of humidity on MIE is studied. It is shown that the MIE is approximately constant when the relative humidity increases from 0% to 90% at room temperature. This indicates that humidity has no significant influence on MIE. Next, the effect of spark duration on MIE is studied. The spark duration is increased by connecting a series resistor to the spark circuit. It is shown that the MIE is approximately constant when the spark duration is varied from 5 ns to 1 ms.  相似文献   

9.
《Journal of Electrostatics》2006,64(3-4):263-272
Conventional tests for investigating the minimum ignition energy (MIE) of dust clouds are restricted to energies above a few mJ, due to the challenges of producing sparks of very low energies that can be synchronised with a transient dust cloud. In this paper, a new circuit for generating capacitive sparks of significantly lower energies than 1 mJ is presented. A measurement system for capturing voltage and current waveforms has been integrated in the circuit, offering the energy delivered to the spark by integration of the power-versus-time curve. When working with such low energy discharges, which are highly transient phenomena, attention must be paid to the measurement technique and methods of noise reduction in the measurement instruments.The measured spark energies range from 0.03 to 7 mJ, and they were found to constitute between 60 and 90 per cent of the energy stored on the discharge capacitors prior to breakdown. Losses to the measurement resistors are increasingly significant at higher energies and larger electrode gaps, due to the relatively large currents, and correspondingly small spark resistances.A simple circuit simulation, in which the spark conductivity is assumed proportional to the spark energy, offers voltage and current waveforms in good agreement with the measured ones, indicating that the spark is mainly resistive. In addition, the discharge channel's ability to carry current depends strongly on the supplied energy. The proportionality factor is found to depend on the breakdown voltage.  相似文献   

10.
Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO2 laser beam with TEM00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO2 laser beam is superior to that obtained using a hot press or soldering iron.  相似文献   

11.
The vibration of backrests contributes to the discomfort of drivers and passengers. A frequency weighting exists for evaluating the vibration of vertical backrests but not for reclined backrests often used during travel. This experimental study was designed to determine how backrest inclination and the frequency of vibration influence perception thresholds and vibration discomfort when the vibration is applied normal to the back (i.e. fore-and-aft vibration when seated upright and vertical vibration when fully reclined). Twelve subjects experienced the vibration of a backrest (at each of the 11 preferred one-third octave centre frequencies in the range 2.5–25 Hz) at vibration magnitudes from the threshold of perception to 24 dB above threshold. Initially, absolute thresholds for the perception of vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). The method of magnitude estimation was then used to obtain judgements of vibration discomfort with each of the four backrest angles. Finally, the relative discomfort between the four backrest angles, and the principal locations for feeling vibration discomfort in the body, were determined. With all backrest inclinations, absolute thresholds for the perception of vibration acceleration were dependent on the frequency of vibration. As the backrest inclination became more horizontal, the thresholds increased at frequencies between 4 and 8 Hz. For all backrest inclinations, the rate of growth of discomfort with increasing magnitude of vibration was independent of the frequency of vibration, so the frequency-dependence of discomfort was similar over the range of magnitudes investigated (0.04–0.6 m s?2 rms). With an upright backrest, the discomfort caused by vibration acceleration tended to be greatest at frequencies less than about 8 Hz. With inclined backrests (at 30°, 60°, and 90°), the equivalent comfort contours were broadly similar to each other, with greatest discomfort caused by acceleration around 10 or 12.5 Hz. At frequencies from 4 to 8 Hz, 30–40 percent greater magnitudes of vibration were required with the three inclined backrests to cause discomfort equivalent to that caused by the upright backrest. It is concluded that with an upright backrest the frequency weighting Wc used in current standards is appropriate for predicting the discomfort caused by fore-and-aft backrest vibration. With inclined and horizontal backrests, a weighting similar to frequency weighting Wb (used to predict discomfort caused by vertical seat vibration) appears more appropriate.  相似文献   

12.
δ-MnO2 with the doping of Ni and Bi was prepared through a simple chemical precipitation/oxidation method. Its structure was confirmed by the X-ray diffraction tests. The results of cyclic voltammetry and galvanostatic charge–discharge tests showed that both the doping of Bi and Ni benefited the electrochemical activity of the MnO2 electrode. Compared to the un-doped electrode, the Bi-doped one showed larger discharge capacity and the Ni-doped one showed higher discharge potential and better cycleability. With the co-doping of 5 wt% Bi and 10 wt% Ni, the discharge capacity of the MnO2 electrode reached 252 mA h g?1 at a 0.2C rate and 116 mA h g?1 at a 1C rate, respectively. Its capacity remained in 105 mA h g?1 after 50 cycles at a 1C rate, but the capacity of a commercial electrolytic MnO2 electrode was only 37 mA h g?1.  相似文献   

13.
Channel tortuosity of 50 cm long laboratory sparks were measured by analyzing a set of images taken by three cameras. The cameras were placed at a radial distance of 200 cm from the spark gap. The angle between any two cameras was 120°. The sparks were generated between a steel rod and a plane electrode. The distribution of the direction change of the channel was found to be Gaussian with a standard deviation of 15.3°. The average tortuosity of the channel defined as the mean absolute value of the direction change was 11.8±1.4°, which is smaller than the average tortuosity of natural lightning and close to the tortuosity of triggered lightning. The average tortuosity is dependent on the segment length used in calculating the direction change. A gradual increase in the average tortuosity (0.08°/cm) was seen when the sparks propagated towards the plane electrode.  相似文献   

14.
In a multi-pin-to-multi-cupped-plane DC negative corona discharge configuration, a stable and diffuse glow discharge controlled by a fast airflow was obtained. This paper investigates the effect of the air gas flow velocity and the electrode structure on the discharge mode transition and the stabilization of the glow discharge by means of electric measurements and emission records. The stabilization mechanism of the glow discharge is discussed. The maximum glow discharge current reached 3.9 mA and the average current density was about 0.7 mA/cm2.  相似文献   

15.
Transport of electrons within a quantum cascade photodetector structure takes place with the help of the scattering of electrons by phonons. By calculating scattering rates of the electrons mediated by longitudinal optical phonons (the dominant scattering mechanism), current–voltage characteristic of a quantum cascade photodetector is calculated. The results indicate that with the increase of bias voltage dark current increases rapidly, then the increase becomes slow at higher voltages, whilst photocurrent remains approximately constant with only slight variations in its magnitude. With the increase of temperature from 80 K to 160 K dark current increases by about two orders of magnitude while photocurrent varies slightly, so that at the illuminating power of 1 mW/m2 photocurrent density increases in mean from 1.10×10−9 A/cm2 at 80 K to 1.14×10−9 A/cm2 at 160 K and then decreases to 1.03×10−9 A/cm2 at 240 K. Thus the responsivity of the detector varies only slightly with temperature. However owing to the decrease in the resistivity of the photodetector with the increase of temperature, Johnson noise limited detectivity decreases considerably.  相似文献   

16.
Ignition energies for short duration (<50 ns) spark discharges were measured for undiluted and nitrogen-diluted H2-N2O mixtures of equivalence ratios ? = 0.15 and 0.2, dilution of 0% and 20% N2, and initial pressures of 15–25 kPa. The ignition events were analyzed using statistical tools and the probability of ignition versus spark energy density (spark energy divided by the spark length) was obtained. The simple cylindrical ignition kernel model was compared against the results from the present study. Initial pressure has a significant effect on the width of the probability distribution, ranging from a broad (P = 15 kPa) to a narrow (P = 25 kPa) probability distribution indicating that the statistical variation of median spark energy density increases as initial pressure of the mixture decreases. A change in the equivalence ratio from 0.15 to 0.2 had a small effect on the median spark energy density. The addition of 20% N2 dilution caused a significant increase in the median spark energy density when compared to no dilution. The extrapolation of the present results to atmospheric pressure, stoichiometric H2-N2O indicates that the electrostatic discharge ignition hazards are comparable to or greater than H2-O2 mixtures.  相似文献   

17.
Micro power generating devices were fabricated by using a gold electroplated coil and a permanent magnet. The electrical power was generated when the magnet reciprocated on the fabricated electroplated coil. The output power was increased as a function of vibration frequency. A measurement system, which convert a rotational motion of a motor into a linear motion, was designed and fabricated. The purpose of this work is to develop the micro power generating devices which convert the ambient vibration or oscillating energy into useful electrical energy. With changing vibration frequency from 0.5 to 8 Hz, the generated power increased linearly. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. After using the step up circuit, the measured voltage was 81 mV at 3 Hz and 235 mV at 6 Hz. From above the frequency of about 4.5 Hz, the gain obtained by using the quadrupler circuit becomes larger than the loss without using that circuit.  相似文献   

18.
In this work, we have experimentally studied the structure and electrochemical properties of nanocrystalline TiFe- and LaNi5-type alloys. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo, Zr improved not only the discharge capacity but also the cycle life of these electrodes. In the nanocrystalline TiFe0.25Ni0.75, powder discharge capacity up to 155 mA h g−1 was measured (at 40 mA g−1 discharge current). On the other hand, a partial substitution of Ni by Al or Mn in LaNi5−xMx alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacity up to 258 mA h g−1 was measured (at 40 mA g−1 discharge current). The studies show, that electrochemical properties of Ni–MH batteries are the function of the microstructure and the chemical composition of used electrode materials.  相似文献   

19.
The process of synthesis of carbon fiber from hydrocarbon vapours in low-current electrical-discharge plasma was investigated in the paper. The carbon fibers were effectively synthesised in discharge of positive polarity generated between a stainless steel needle and a plate made of nickel alloy, for the discharge current ranged from 1 mA up to 3 mA. The experiments were carried out at normal pressure in cyclohexane vapours with argon as carrier gas. The diameter of produced fibers varied from about 20 to 70 μm. The growth rate of the fiber was about 0.25 mm/s.  相似文献   

20.
The transmissibility of a seat depends on the dynamic response of the human body (which varies between individuals, body locations, and vibration magnitudes) and the dynamic response of the seat (which varies according to seat design). In the fore-and-aft direction, the transmissibility of a seat backrest was therefore expected to vary with vertical position on the backrest. This experimental study with 12 subjects investigated how backrest transmissibility varied with both the vertical measurement position and the magnitude of vibration. The transmissibilities of the backrest of a car seat and a block of solid foam were measured at five heights above the seat surface with random fore-and-aft vibration at five magnitudes (0.1, 0.2, 0.4, 0.8 and 1.6 ms−2 rms) over the range 0.25–20 Hz. The median transmissibilities exhibited resonances in the range 4–5 Hz for the car seat and in the range 3–6 Hz for the foam. The backrests showed clear changes in transmissibility with vertical position, but there were minimal changes in the resonance frequencies. For both backrests, the transmissibilities were greatest at the middle of the backrest. The least transmissibility was measured at the top of the car seat but at the bottom of the foam backrest. At each measurement position on both backrests, the transmissibility was non-linear with vibration magnitude: the resonance frequencies and transmissibilities at resonance decreased with increasing vibration magnitude. The variations in backrest transmissibility with vertical position and with vibration magnitude were sufficiently great to affect assessments of backrest dynamic performance. The results suggest that the fore-and-aft transmissibilities of backrests should be evaluated from more than one measurement location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号