首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Sound localization cues generally include interaural time difference, interaural intensity difference, and spectral cues. The purpose of this study is to investigate the important spectral cues involved in so-called head related transfer functions (HRTFs) using a combination of HRTF analyses and a virtual sound localization (VSL) experiment. Previous psychoacoustical and physiological studies have both suggested the existence of spectral modulation frequency (SMF) channels for analyzing spectral information (e.g., the spectral cues coded in HRTFs). SMFs are in a domain related to the Fourier transform of HRTFs. The relationship between various SMF regions and sound localization was tested here by filtering or enhancing HRTFs in the SMF domain under a series of conditions using a VSL experiment. Present results revealed that azimuth localization was not significantly affected by HRTF manipulation. Applying notch filters between 0.1 and 0.4 cyclesoctave or between 0.35 and 0.65 cyclesoctave resulted in significantly less accurate elevation responses at low elevations, while spectral enhancement in these two SMF regions did not produce a significant change in sound localization. Likewise, low-pass filtering at 2 cyclesoctave did not significantly influence localization accuracy, suggesting that the major cues for sound localization are in the SMF region below 2 cyclesoctave.  相似文献   

2.
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/- 120 micros range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.  相似文献   

3.
Directional properties of the sound transformation at the ear of four intact echolocating bats, Eptesicus fuscus, were investigated via measurements of the head-related transfer function (HRTF). Contributions of external ear structures to directional features of the transfer functions were examined by remeasuring the HRTF in the absence of the pinna and tragus. The investigation mainly focused on the interactions between the spatial and the spectral features in the bat HRTF. The pinna provides gain and shapes these features over a large frequency band (20-90 kHz), and the tragus contributes gain and directionality at the high frequencies (60 to 90 kHz). Analysis of the spatial and spectral characteristics of the bat HRTF reveals that both interaural level differences (ILD) and monaural spectral features are subject to changes in sound source azimuth and elevation. Consequently, localization cues for horizontal and vertical components of the sound source location interact. Availability of multiple cues about sound source azimuth and elevation should enhance information to support reliable sound localization. These findings stress the importance of the acoustic information received at the two ears for sound localization of sonar target position in both azimuth and elevation.  相似文献   

4.
Free-field to eardrum transfer functions (HRTFs) were measured from both ears of 10 subjects with sound sources at 265 different positions. A principal components analysis of the resulting 5300 HRTF magnitude functions revealed that the HRTFs can be modeled as a linear combination of five basic spectral shapes (basis functions), and that this representation accounts for approximately 90% of the variance in the original HRTF magnitude functions. HRTF phase was modeled by assuming that HRTFs are minimum-phase functions and that interaural phase differences can be approximated by a simple time delay. Subjects' judgments of the apparent directions of headphone-presented sounds that had been synthesized from the modeled HRTFs were nearly identical to their judgments of sounds synthesized from measured HRTFs. With fewer than five basis functions used in the model, a less faithful reconstruction of the HRTF was produced, and the frequency of large localization errors increased dramatically.  相似文献   

5.
Head-related transfer functions(HRTFs) are the core of virtual auditory display and relevant applications. However,a standard method for HRTF measurements has not been established. This work examines the influence of different HRTF measurement methodologies on auditory perception. First, the diffusion-field equalization was proposed and applied to HRTFs of a single dummy head(KEMAR) from five different datasets. Then,the spectral deviations among the HRTFs were calculated and analyzed. Finally, a series of subjective listening experiments(including localization and discrimination experiments) were conducted. Results indicate the diffusion-field equalization is an effective pre-processing method which reduces the difference in HRTF magnitude spectra caused by different measurement methodologies. Moreover,the HRTFs from different measurement methodologies have similar localization performance below 12 kHz, whereas the inter-dataset differences in timbre are distinct leading to audible discrimination.  相似文献   

6.
The paper reports on the ability of people to rapidly adapt in localizing virtual sound sources in both azimuth and elevation when listening to sounds synthesized using non-individualized head-related transfer functions (HRTFs). Participants were placed within an audio-kinesthetic Virtual Auditory Environment (VAE) platform that allows association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues through the use of a tracked physical ball manipulated by the subject. This set-up offers a natural perception-action coupling, which is not limited to the visual field of view. The experiment consisted of three sessions: an initial localization test to evaluate participants' performance, an adaptation session, and a subsequent localization test. A reference control group was included using individual measured HRTFs. Results show significant improvement in localization performance. Relative to the control group, participants using non-individual HRTFs reduced localization errors in elevation by 10° with three sessions of 12 min. No significant improvement was found for azimuthal errors or for single session adaptation.  相似文献   

7.
钟小丽  徐秀 《声学学报》2018,43(1):83-90
头相关传输函数(HRTF)是虚拟听觉重放的核心·目前,HRTF的实验室测量缺乏统一的规范。本文研究了不同测量对HRTF的听觉影响。首先提出了扩散场均衡的预处理方法,并对来自5个不同数据库的KEMAR假人的HRTF数据进行了扩散场均衡;然后,采用谱差异评估了不同数据库HRTF测量的频谱差异;最后,采用HRTF合成的虚拟声信号开展了一系列的主观听音实验,包括定位实验和区分实验·结果表明,扩散场均衡是一种有效的HRTF预处理方法,可以减小不同测量对HRTF频谱的影响;不同测量基本上不影响HRTF在12 kHz以下的定位效果,但对音色的影响较大,从而导致听觉上的可区分.   相似文献   

8.
An efficient method for head-related transfer function (HRTF) measurement is presented. By applying the acoustical principle of reciprocity, one can swap the speaker and the microphone positions in the traditional (direct) HRTF measurement setup, that is, insert a microspeaker into the subject's ear and position several microphones around the subject, enabling simultaneous HRTF acquisition at all microphone positions. The setup used for reciprocal HRTF measurement is described, and the obtained HRTFs are compared with the analytical solution for a sound-hard sphere and with KEMAR manikin HRTF obtained by the direct method. The reciprocally measured sphere HRTF agrees well with the analytical solution. The reciprocally measured and the directly measured KEMAR HRTFs are not exactly identical but agree well in spectrum shape and feature positions. To evaluate if the observed differences are significant, an auditory localization model based on work by J. C. Middlebrooks [J. Acoust. Soc. Am. 92, 2607-2624 (1992)] was used to predict where a virtual sound source synthesized with the reciprocally measured HRTF would be localized if the directly measured HRTF were used for the localization. It was found that the predicted localization direction generally lies close to the measurement direction, indicating that the HRTFs obtained via the two methods are in good agreement.  相似文献   

9.
Head-related transfer function database and its analyses   总被引:1,自引:0,他引:1  
Based on the measurements from 52 Chinese subjects (26 males and 26 females), a high-spatial-resolution head-related transfer function (HRTF) database with corre- sponding anthropometric parameters is established. By using the database, cues relating to sound source localization, including interaural time difference (ITD), interaural level difference (ILD), and spectral features introduced by pinna, are analyzed. Moreover, the statistical relationship between ITD and anthropometric parameters is estimated. It is proved that the mean values of maximum ITD for male and female are significantly different, so are those for Chinese and western sub- jects. The difference in ITD is due to the difference in individual anthropometric parameters. It is further proved that the spectral features introduced by pinna strongly depend on individual; while at high frequencies (f≥ 5.5 kHz), HRTFs are left-right asymmetric. This work is instructive and helpful for the research on bin- aural hearing and applications on virtual auditory in future.  相似文献   

10.
Previous empirical and analytical investigations into human sound localization have illustrated that the head-related transfer function (HRTF) and interaural cues are affected by the acoustic material properties of the head. This study utilizes a recent analytical treatment of the sphere scattering problem (which accounts for a hemispherically divided surface boundary) to investigate the contribution of hair to the auditory cues below 5 kHz. The hair is modeled using a locally reactive equivalent impedance parameter, and cue changes are discussed for several cases of measured hair impedance. The hair is shown to produce asymmetric perturbations to the HRTF and the interaural time and level differences. The changes in the azimuth plane are explicated via analytical examination of the surface pressure variations with source angle. Experimental HRTFs obtained using a sphere with and without a hemispherical covering of synthetic hair show a good agreement with analytical results. Additional experimental and analytical investigations illustrate that the relative contribution of the hair remains robust, regardless of the placement of the pinnas, or inclusion of a cylindrical neck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号