首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate excitation transfer and migration processes in a cold gas of rubidium Rydberg atoms. Density-dependent measurements of the resonant population exchange for atoms initially excited into the 32P3/2(|mJ|=3/2) state are compared with a Monte Carlo model for coherent energy transfer. The model is based on simulations of small atom subensembles involving up to ten atoms interacting via coherent pair processes. The role of interatomic mechanical forces due to the resonant dipole-dipole interaction is investigated. Good agreement is found between the experimental data and the predictions of the model, from which we infer that atomic motion has negligible influence on the energy transfer up to Rydberg densities of 108 cm-3, that the system has to be described in terms of many-body dynamics, and that the energy transfer preserves coherence on microsecond timescales.  相似文献   

2.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing.  相似文献   

3.
Isotope shifts and hyperfine structure have been measured in 4snp 1 P1 and Rydberg states for all stable calcium isotopes and the radioisotope 41Ca using high-resolution laser spectroscopy. Triple-resonance excitation via Rydberg state was followed by photoionization with a CO2 laser and mass selective ion detection. Isotope shifts for the even-mass isotopes have been analyzed to derive specific mass shift and field shift factors. The apparent isotope shifts for 41Ca and 43Ca exhibit anomalous values that are n-dependent. This is interpreted in terms of hyperfine-induced fine-structure mixing, which becomes very pronounced when singlet-triplet fine-structure splitting is comparable to the hyperfine interaction energy. Measurements of fine-structure splittings for the predominant isotope 40Ca have been used as input parameters for theoretical calculation of the perturbed hyperfine structure. Results obtained by diagonalizing the second-order hyperfine interaction matrices agree very well with experimentally observed spectra. These measurements allow the evaluation of highly selective and sensitive methods for the detection of the rare 41Ca isotope. Received 17 December 1999 and Received in final form 29 March 2000  相似文献   

4.
In this work, the multiplet splitting in terms of a spin-dependent model is analyzed. The spin-polarized and unpolarized single configuration Dirac-Fock-Slater wavefunctions have been used in the evaluation of the total energies of highly ionized argon with different L shell population The transition energies of hollow argon atom with initial configurations 1s 0 1/22s m 1/22p n 1/22p l 3/2 with m = 0 to 2 and n + l varying from 6 to 1 are reported in this work. The calculations have been carried out by taking into account a relativistic exchange potential in the Dirac-Slater potential. To account for the correlation effects, a correction term has also been considered perturbatively. The present calculations show that the spin-polarized technique which is mainly applied to the ground states of atoms may also be applied to atoms ionized in the inner shells with a good degree of accuracy. Received 5 December 2000 and Received in final form 9 April 2001  相似文献   

5.
We report new measurements of the oscillator strengths of the 3p 2P3/2 ↦nd 2D5/2, 3/2 and 3p 2P1/2 ↦ nd 2D3/2 Rydberg transitions of sodium using a thermionic diode ion detector in conjunction with the Nd:YAG pumped dye lasers. The ns 2S1/2 and nd 2D5/2,3/2 Rydberg series have been recorded via two-step excitation, from the 3p 2P3/2 and 3p 2P1/2 intermediate states. Employing the saturation technique, the photoionization cross sections from the 3p 2P3/2 and 3p 2P1/2 intermediate states at the first ionization threshold are determined as 7.9(1.3) Mb and 6.7(1.1) Mb respectively. The f-values of the Rydberg transitions are calibrated with the photoionization cross section measured at the first ionization threshold and compared with the earlier data.  相似文献   

6.
We present an investigation of sub-Doppler effects in a cesium magneto-optical trap. First, a simple one-dimensional theoretical model of the trap is developed for aJ g = 1 J e = 2 transition. This model predicts the size of the trapped atom cloud and temperature as a function of laser intensity and detuning. In the limit of small magnetic field gradients, the trap temperature is found to be equal to the molasses temperature and a minimum size for the trap is calculated. We then describe several experiments performed in a three-dimensional cesium trap to measure the trap parameters, spring constant, friction coefficient, temperature and density. Whilst the temperature of the trapped atoms is found to be equal to the molasses temperature, in agreement with theory, the trap spring constant is found to be two orders of magnitude smaller than the one-dimensional prediction, a value close to that predicted by Doppler models. The maximum density is found to be on the order of 1012 atoms/cm3 or one atom per optical wavelength on average. When the number of trapped atoms becomes large, the temperature begins to increase dramatically. This excess temperature depends in a very simple way on the atom number, laser intensity and detuning, suggesting that its origin lies in multiple photon scattering within the trap.  相似文献   

7.
We present an analysis of the Raman interaction between a Rydberg atom and ultrashort light pulses. An application of the synchronization of quantum transitions to a simple atomic system (the hydrogen atom) is demonstrated. This is a direct way of measuring times and frequencies of microwave transitions between the high-lying atomic states using ultrashort light pulses. The results and analysis represent a new method for measuring the Rydberg constant.  相似文献   

8.
A Rydberg atom embedded in a plasma can experience penetration by slowly moving electrons within its volume. The original pure Coulomb potential must now be replaced by a screened Coulomb potential which contains either a screening length Rs or a screening factor A = Rs -1 . For any given discrete energy level, there is a Critical Screening Factor (CSF) Ac beyond which the energy level disappears (by merging into the continuum). Analytical results are obtained for the classical dependence of the energy on the screening factor, for the CSF, and for the critical radius of the electron orbit for Circular Rydberg States (CRS) in this screened Rydberg atom. The results are derived for any general form of the screened Coulomb potential and are applied to the particular case of the Debye potential. We also show that CRS can temporarily exist above the ionization threshold and are therefore the classical counterparts of quantal discrete states embedded into continuum. The results are significant not only to Rydberg plasmas, but also to fusion plasmas, where Rydberg states of multi-charged hydrogen-like ions result from charge exchange with hydrogen or deuterium atoms, as well as to dusty/complex plasmas.  相似文献   

9.
We report new studies of the odd parity autoionizing Rydberg series of strontium attached to the 4d( 2 D 3/2, 5/2) ionic limits possessing J = 1-3 based on the two-color three photon resonant excitation technique in conjunction with an atomic beam apparatus. Using the 4d 23 P 0 intermediate levels, we have been able to record the autoionizing Rydberg series of J = 1 whereas, from the 4d 23 P 2 intermediate level the series of Rydberg levels possessing J = 1, 2 and 3 have been observed. The level assignments and the line shapes simulations of the autoionizing resonances have been made using the multichannel quantum defect theory. Received 21 November 2001 / Received in final form 2 May 2002 Published online 19 July 2002  相似文献   

10.
Typical features in laser multiphoton ionization of organometallic compounds are well evident in the case of the diethyltelluride C2H5TeC2H5 molecule. The use of a tunable dye laser coupled with time-of-flight (TOF) mass spectroscopy has allowed to establish that a large amount of tellurium is eliminated from the parent molecule as a neutral atom either in its ground or low excited states. Sharp two- and three-photon atomic Te resonances, which give origin to extraproduction of Te+ ions, have been identified in the optical spectra measured by varying the laser wavelength.  相似文献   

11.
We present a detailed theoretical treatment to describe the lineshape of molecular resonances in a cold dense gas of rubidium Rydberg atoms. Molecular potentials in Hund's case (c) are calculated by diagonalization of an interaction matrix. We show how the strong ℓ-mixing due to long-range Rydberg-Rydberg interactions can lead to resonances in excitation spectra. Such resonances were first reported in [S.M. Farooqi et al., Phys. Rev. Lett. 91, 183002 (2003)], where single UV photon excitations from the 5s ground state occurred at energies corresponding to normally forbidden transitions or very far detuned from the atomic energies. Here, we focus our attention on resonances at energies corresponding to excited atom pairs (n - 1)p3/2+(n + 1)p3/2. Very good agreement between the theoretical and experimental lineshapes is found.  相似文献   

12.
We report results of the first laser collimation of a thermal beam of Fe atoms on the leaky 5D4 5F5 transition, with both parallel linear xx and crossed linear xy laser polarization configurations. The measured atomic beam divergence is compared to a rate-equation model and a quantum Monte Carlo model. The experimental values for the divergence are limited by the finite laser line width, which is comparable to the natural line width of the Fe atom. In general, flux decreases with higher intensities, showing the effect of the leaky transition. At the best beam collimation RMS = 0.17 mrad, which is for a detuning of = – and a saturation parameter of s = 6, the flux decreased to approximately 70%. Highest flux was measured for a detuning of = –2 and s = 4, reaching 135% of the uncooled value. From our measurements we estimate the total leak rate to be 1/(240 ± 40), which is in good agreement with the literature value of 1/244. The crossed linear polarization configuration is the better choice, with a slightly better collimation but the same atomic beam flux. Plugging of the largest leak would increase the flux to at least 80% of the closed transition value, resulting in better contrast for atom lithography.  相似文献   

13.
The main properties of longitudinal and transverse electric field ionizers for fast Rydberg atoms n=21–40 have been investigated. The dispersion and the background due to collisional processes between fast atoms and residual gas molecules have been measured and calculated. The kinetic energy spread of ions formed by field ionization of Rydberg atoms and their trajectories have been calculated. The potassium beam energy was 3.9 keV.  相似文献   

14.
We present experimentally measured absolute values of the photoionization cross sections from the 5s5p 1P1 and 5s5p 3P1 excited states of strontium at the first ionization threshold as 11.4±1.8 Mb and 10.7±1.7 Mb respectively using saturated absorption technique along with a thermionic diode ion detector in conjunction with a Nd:YAG pumped dye laser system. These threshold photoionization cross sections values have been utilized to determine the oscillator strengths of the 5s5p 1P1↦5snd 1D2 and 5s5p 3P1↦5snd 3D2 Rydberg transitions. The oscillator strength densities in the continuum corresponding to the 5s5p 3P1 excited state have also been determined by measuring the photoionization cross sections at five ionizing wavelengths above the first ionization threshold. Smooth merging of the discrete f-values into the oscillator strength densities has been observed for the 5s5p 3P1↦5snd 3D2 series across the ionization threshold.  相似文献   

15.
Total and partial photoionization cross sections for (Fe XXI+hν→Fe XXII+e) are presented for the ground and excited bound states with n?10 and l?9. Fe XXI is prevalent in high-temperature astrophysical plasmas as well as in photoionized plasmas excited by hard X-rays. Results are reported for the first time for the high-energy photoionization with core excitations to n=2,3 states. Details of photoionization, especially the high-energy features that often dominate considerably over the low energy ones, are illustrated. These prominent features will affect the photoionization and the recombination rates in high-temperature plasmas. Calculations are carried out in the close coupling (CC) approximation using the R-matrix method. A large CC wavefunction expansion for Fe XXII which includes the ground and 28 excited core states from n=2 and 3 complexes and spans over a wide energy range is used. A total of 835 discrete bound states of Fe XXI in the singlet, triplet, and quintet symmetries are obtained. Total photoionization cross sections, σPI(nLS), for ionization into all 29 states are presented for all 835 final bound states and partial photoionization cross sections, σPI(g,nLS), for ionization into the ground 2P0 state of the core are presented for 685 states. While the n=2 core excitations are at relatively lower energy range (within 15 Ry from the ionization threshold), the n=3 excitations lie at considerably higher energy, 73 Ry and above, yet introduce resonant features and enhancements more prominent than those of n=2 states. Larger numbers of resonances are formed due to Rydberg series of autoionizing states converging on to the 29 core states. However, most noticeable structures are formed in the excited state cross sections by the photoexcitation-of-core (PEC) resonances in the photon energy range of 73-82 Ry. All these high-energy features are absent in the currently available results. The present results should enable more accurate modeling of the emission spectrum of highly excited plasma from the optical to far-ultraviolet region.  相似文献   

16.
We report the observation of pronounced coherent population trapping and dark resonances in Rydberg states of xenon. A weak two-photon coupling with radiation of = 250 nm is induced between the 5p6 1 S 0 ground state of xenon and state 5p 56p[1/2]0, leading to (2+1) resonantly enhanced three-photon ionization. The state 5p 56p[1/2]0 is strongly coupled by radiation with ≃ 600 nm to 5p 5 ns[J C]1 or 5p 5 nd[J C]1 Rydberg states with principal quantum numbers n in the range 18 ?n? 23 and with the rotational quantum number of the ionic core J C = 1/2 or J C = 3/2. The ionization is monitored through observation of the photoelectrons with an energy resolution ΔE = 150 meV which is sufficient to distinguish the ionization processes into the two ionization continua. Pronounced and robust dark resonances are observed in the ionization rate whenever is tuned to resonance with one of the ns- or nd-Rydberg states. The dark resonances are due to efficient population trapping in the atomic ground state 5p6 1 S 0 through the suppression of excitation of the intermediate state 5p 56p[1/2]0. The resolution is sufficient to resolve the hyperfine structure of the ns-Rydberg levels for odd xenon isotopes. The hyperfine splitting does not vary significantly with n in the given range. Results from model calculations taking the natural isotope abundance into account are in good agreement with the observed spectral structures. Pronounced dark resonances are also observed when the dressing radiation field with is generated from a laser with poor coherence properties. The maximum reduction of the ionization signal clearly exceeds 50%, a value which is expected to be the maximum, when the dip is caused by saturation of the transition rate between the intermediate and the Rydberg state due to incoherent radiation. This work demonstrates the potential of dark resonance spectroscopy of high lying electronic states of rare gas atoms. Received 7 May 2000 and Received in final form 25 June 2001  相似文献   

17.
The cycle-averaged ac Stark effect associated with the [ A ]+v=2?[ X ]2Π1/2v=0 two-photon absorption of NO at intensities between 7.7 and 15.2 TW cm-2 has been characterized in real time through a synergic combination of bichromatic laser experiments and quantum-dynamics calculations. Measurements of the fluorescence emitted by the Rydberg [ A ]+v=2 level as a function of time between Stark and probe components of a bichromatic field exhibit a characteristic evolution in temporal peak structure with Stark-field intensity, which is interpreted in terms of a time-dependent Floquet analysis of the laser–matter interaction. The experimental observations are consistent with a dynamic Stark shift of Δεs12)≤0.23 eV of the optical transition at these intensities. Received: 18 January 2002 / Revised version: 6 March 2002 / Published online: 24 April 2002  相似文献   

18.
肖颖  戴长建  秦文杰 《中国物理 B》2009,18(10):4251-4258
Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f76s6p[ 8P5/2], 4f76s6p[ 8P7/2] and 4f76s6p[ 8P9/2] intermediate states, respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000~cm-1 to 38250~cm-1 and from 38900~cm-1 to 39500 cm-1. The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n^* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.  相似文献   

19.
We present first measurements on the resonance enhanced three-photon excitation in thallium, using a Nd:YAG laser pumped dye laser in conjunction with a thermionic diode ion detector. The even-parity 6s2ns2S1/2 (15 ? n ? 31) and nd 2D5/2 (13 ? n ? 42) Rydberg states have been observed. The measured level energies reveal a dynamic shift from the photoabsorption values, which is decreasing with increasing n, while the asymmetry in the line profile is observed to be increasing with increasing n. In addition, an autoionising level (sp24P3/2) adjacent to the ionization threshold has been observed and quantitatively analyzed using the Fano’s photoionization cross-section relation for an isolated autoionising resonance.  相似文献   

20.
The Rydberg nd 2 D 3/2, 5/2 states (n=15–30) of the thallium atom were studied by the method of two-stage excitation with subsequent ionization of the excited atoms by an electric field. The nd 2 D levels were populated via the intermediate 7s 2 S 1/2 states. The fine-structure splitting was found to be representable in the form of a combination of the terms depending on n*?3 and n*?5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号