首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
磁共振扩散张量成像可以定量无创研究人体内水分子在三维空间中的各向异性扩散规律,进而获取重要的病理及生理信息.为了得到水分子各向异性扩散信息,需要按照一定的方案依次施加不同方向的扩散敏感梯度磁场,测量水分子在这些方向上的扩散系数用以估算扩散张量.扩散张量成像测量结果的准确程度受梯度磁场方向分布方案的影响,本文对扩散敏感梯度磁场方向分布方案进行综述,包括完全随机方案、启发式方案、规则多面体式方案和数值优化方案等,分析这些方案的优势与局限性,并提出需进一步研究的问题.  相似文献   

2.
The choice of the number (N) and orientation of diffusion sampling gradients required to measure accurately the water diffusion tensor remains contentious. Monte Carlo studies have suggested that between 20 and 30 uniformly distributed sampling orientations are required to provide robust estimates of water diffusions parameters. These simulations have not, however, taken into account what effect random subject motion, specifically rotation, might have on optimised gradient schemes, a problem which is especially relevant to clinical diffusion tensor MRI (DT-MRI). Here this question is investigated using Monte Carlo simulations of icosahedral sampling schemes and in vivo data. These polyhedra-based schemes, which have the advantage that large N can be created from optimised subsets of smaller N, appear to be ideal for the study of restless subjects since if scanning needs to be prematurely terminated it should be possible to identify a subset of images that have been acquired with a near optimised sampling scheme. The simulations and in vivo data show that as N increases, the rotational variance of fractional anisotropy (FA) estimates becomes progressively less dependent on the magnitude of subject rotation (), while higher FA values are progressively underestimated as increases. These data indicate that for large subject rotations the B-matrix should be recalculated to provide accurate diffusion anisotropy information.  相似文献   

3.
A parameter, chi2p, based on the fitting error was introduced as a measure of reliability of DT-MRI data, and its properties were investigated in simulations and human brain data. Its comparison with the classic chi2 revealed its sensitivity to both the goodness of fit and the pixel signal-to-noise-ratio (SNR), unlike the classic chi2, which is sensitive only to the goodness of fit. The new parameter was thus able to separate effectively pixels with coherent signals (having small fitting error and/or high SNR) from those with random signals (having inconsistent fitting and/or low SNR). A practical advantage of chi2p over the classic chi2 was that chi2p is quantified directly from the data of each pixel, without requiring accurate estimation of data-dependent parameters (such as noise variance), which often makes application of the classic chi2 problematic. Analytical approximations of chi2p enabled an objective (data-independent) and automated calculation of a threshold value, used for internal scaling of the chi2p map. Apart from assessing data reliability on a pixel-by-pixel basis, chi2p was used to develop an objective and generic methodology for the exclusion of pixels with unreliable DT information by discarding pixels with chi2p values exceeding the threshold. Pixels corresponding to very low SNR, and poorly fitted cerebrospinal fluid and surrounding brain tissue, had increased chi2p values and were successfully excluded, providing DT anisotropy maps free from artifactual anisotropic appearance.  相似文献   

4.
In high-field NMR microscopy rapid single-shot imaging methods, for example, echo planar imaging, cannot be used for determination of the apparent diffusion tensor (ADT) due to large magnetic susceptibility effects. We propose a pulse sequence in which a diffusion-weighted spin-echo is followed by multiple gradient-echoes with additional diffusion weighting. These additional echoes can be used to calculate the ADT and maps. We show here that this results in modest but consistent improvements in the accuracy of ADT determination within a given total data acquisition time. The method is tested on excised, chemically fixed rat spinal cords.  相似文献   

5.
This study has investigated the effects of the selection of the diffusion-weighted (DW) gradient directions on the precision of a diffusion tensor imaging (DTI) experiment. The theoretical analysis provided a quantitative framework in which the noise performance of DTI schemes could be assessed objectively and for the development of novel DTI schemes, which employ multiple DW gradient directions. This generic framework was first applied to the examination of two commonly used DTI schemes, which employed 6 DW gradient directions and hitherto were used indiscriminately under the sole condition of noncollinearity. It was then used to design and assess a novel 12-DW-gradient-direction DTI protocol, which employed the same total number of DW acquisitions as the two conventional schemes (12). This theoretical investigation was then corroborated using rigorous simulation and DTI experiments on both an isotropic phantom and a healthy human brain. Both the theoretical and the experimental analysis demonstrated that the two conventional schemes showed a significantly different noise performance and that use of the new multiple-DW-gradient-direction scheme clearly improved the precision of the DTI measurements.  相似文献   

6.
The uncertainty in the estimation of diffusion model parameters in diffusion tensor imaging (DTI) can be reduced by optimally selecting the diffusion gradient directions utilizing some prior structural information. This is beneficial for spinal cord DTI, where the magnetic resonance images have low signal-to-noise ratio and thus high uncertainty in diffusion model parameter estimation. Presented is a gradient optimization scheme based on D-optimality, which reduces the overall estimation uncertainty by minimizing the Rician Cramer-Rao lower bound of the variance of the model parameter estimates. The tensor-based diffusion model for DTI is simplified to a four-parameter axisymmetric DTI model where diffusion transverse to the principal eigenvector of the tensor is assumed isotropic. Through simulations and experimental validation, we demonstrate that an optimized gradient scheme based on D-optimality is able to reduce the overall uncertainty in the estimation of diffusion model parameters for the cervical spinal cord and brain stem white matter tracts.  相似文献   

7.
We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here, we use an efficient Levenberg-Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches. This method is demonstrated on a computer-generated and real protein systems. We also address the issue of sensitivity of the diffusion tensor determination from (15)N relaxation measurements to experimental errors in the relaxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.  相似文献   

8.
In autopsy of humans, there is usually an interval of hours to days between death and tissue fixation, during which the cadaver is stored below room temperature to retard tissue autolysis. We have attempted to model this process and evaluate the alteration in diffusion indices of the postmortem brain in pigs, which were kept at 4°C. The pigs were scanned prior to death and at 3, 6, 9, 12, 18, 24, 30, 36, 42, 48 and 72 h postmortem. Regions of interest were placed in the corpus callosum, internal capsule, periventricular and subcortical white matter anteriorly and posteriorly. There was a slight increase in fractional anisotropy (FA) in the first 3 h postmortem. The FA remained stable up to 72 h postmortem. There was a marked decrease in trace, eigenmajor (λmajor), eigenmedium (λmedium) and eigenminor (λminor), particularly in the first 3 h following death. This study supports the utility of measuring diffusion anisotropy if the time elapsed between death and tissue fixation is within 3 days. However, trace and eigenvalues decreased markedly within the first few hours postmortem. Therefore trace and eigenvalues obtained from ex vivo studies cannot be extrapolated to in vivo studies.  相似文献   

9.
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.  相似文献   

10.
Moyamoya disease (MMD) is a rare disorder of unknown etiology in which terminal portions of the internal carotid arteries become steno-occlusive, with fine collateral "moyamoya vessels" formed secondarily, resulting in serial ischemic strokes throughout its clinical course. Whole-brain histogram (WBH) of diffusion tensor imaging (WBH-DTI) is an analytical tool whose feasibility has been ascertained in various pathologies. To elucidate whether WBH-DTI could detect any difference between ischemic MMD and normal controls, we examined 27 consecutive MMD patients without hemorrhage and 48 normal controls in this prospective study using a 3.0-T magnetic resonance scanner. WBHs of fractional anisotropy (FA) (WBH-FA) and mean diffusivity (MD) (WBH-MD) were compared among three groups: Group 1, MMD patients with infarct (n=15); Group 2, MMD patients without infarct (n=12); and Group 3, normal controls (n=48). Group 1 showed significantly higher peak height and significantly lower mean value on WBH-FA, as well as significantly lower peak height and significantly higher mean value on WBH-MD, compared with Groups 2 and 3. No significant difference was seen in parameters at either WBH-FA or WBH-MD between Groups 2 and 3. These results might reflect the pathological severity of each group, and WBH-DTI could feasibly detect differences between ischemic MMD with infarction and MMD without infarction and normal controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号