首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
施德恒  牛相宏  孙金锋  朱遵略 《物理学报》2012,61(9):93105-093105
采用内收缩多参考组态相互作用方法和相关一致基aug-cc-pV6Z, 对BF自由基X1+和a3∏ 态的势能曲线进行了研究. 计算是在0.095---1.33 nm的核间距内进行的. 为获得更准确的结果, 计算中还考虑了Davidson修正、相对论修正及核价相关修正对势能曲线的影响. 相对论修正采用的方法是二阶DouglasKroll哈密顿近似, 修正计算是在cc-pV5Z基组水平上进行的. 核价相关修正使用的是cc-pCV5Z基组. 利用得到的势能曲线, 拟合出了各种修正下BF自由基X1+和a3∏ 态的光谱常数De, Re, ωe, ωexe, ωeye, Be和αe、并与实验结果进行了比较. 结果表明: 考虑Davidson修正、相对论修正和核价相关修正后得到的光谱常数最接近实验结果. 利用修正后的势能曲线, 通过求解径向振转Schrödinger方程, 找到了转动量子数J = 0时这两个电子态的全部振动态, 并计算了每一电子态前20个振动态的振动能级、惯性转动常数和离心畸变常数, 其值与已有的实验结果较为一致. 本文得到的光谱常数和分子常数达到了很高的精度, 能为进一步的光谱实验提供可靠的参考.  相似文献   

2.
王杰敏  张蕾  施德恒  朱遵略  孙金锋 《物理学报》2012,61(15):153105-153105
采用包含Davidson修正多参考组态相互作用(MRCI)方法结合价态范围内的最大相关一致基As/aug-cc-pV5Z和O/aug-cc-pV6Z, 计算了AsO+ (X2+)和AsO+(A2∏)的势能曲线. 利用AsO+离子的势能曲线在同位素质量修正的基础上, 拟合出了同位素离子75As16O+75As18O+的两个电子态光谱常数. 对于X2+态的主要同位素离子75As16O+, 其光谱常数Re, ωe, ωexe, Be和αe分别为 0.15770 nm, 1091.07 cm-1, 5.02017 cm-1, 0.514826 cm-1和0.003123 cm-1; 对于A2∏态的主要同位素离子75As16O+, 其Te, Re, ωe, ωexe, Be和αe分别为5.248 eV, 0.16982 nm, 776.848 cm-1, 6.71941 cm-1, 0.443385 cm-1和0.003948 cm-1. 这些数据与已有的实验结果均符合很好. 通过求解核运动的径向薛定谔方程, 找到了J=0时AsO+(X2+)和AsO+(A2∏)的前20个振动态. 对于每一振动态, 还分别计算了它的振动能级、转动惯量及离心畸变常数, 并进行了同位素质量修正, 得到各同位素离子的分子常数. 这些结果与已有的实验值非常一致. 本文对于同位素离子75As16O+(X1+), 75As18O+(X1+), 75As16O+(A1∏)和75As16O+(A1∏)的光谱常数和分子常数属首次报导.  相似文献   

3.
采用内收缩多参考组态相互作用(MRCI)方法计算了SO自由基X3-, a1△和A'3△电子态的势能曲线. 采用Davidson修正避免由于MRCI方法本身的大小一致性缺陷产生的误差. 进一步考虑了相对论修正和核价相关修正对势能曲线的影响. 相对论修正是利用二阶Douglas-Kroll 哈密顿近似在cc-pV5Z基组水平进行的;同时核价相关修正是在cc-pCVDZ基组水平进行的. 为了提高计算精度,利用两点能量外推法,将各能量外推至完全极限处,得到外推后的势能曲线,再对势能曲线进行拟合,得到各种水平下三个电子态的光谱常  相似文献   

4.
采用内收缩多参考组态相互作用(MRCI)方法,结合价态范围内的最大相关一致基aug-cc-pV6Z,计算了SiN自由基X2∑+,A2∏-和B2∑+电子态的势能曲线.采用Davidson修正来避免由于MRCI方法本身的大小一致性缺陷产生的误差.为了提高计算精度,进一步考虑了相对论修正和核价相关修正对势能曲线的影响.相对论修正是利用二阶Douglas-Kroll哈密顿近似在cc-pV5Z基组水平进行的;同时核价相关修正是在cc-pCV5Z基组水平进行的.对这些势能曲线进行拟合,得到各种水平下三个电子态的光谱常数(Te,Re,ωe,ωexe,αe和Be),并详细分析了Davidson 修正、相对论修正和核价相关修正对光谱常数的影响.与其他理论结果和实验数据进行比较,可知本文的结果更精确、更完整.  相似文献   

5.
采用内收缩多参考组态相互作用(MRCI)方法结合相关一致基aug-cc-p V5Z计算了CP分子X~2Σ~+,A~2Π和B~2Σ~+和CP~-离子X~1Σ~+电子态的势能曲线.考虑了Davidson、相对论和核价相关修正对势能曲线的影响.本文的相对论修正是利用二阶Douglas-Kroll哈密顿近似在cc-p V5Z基组水平进行的;同时核价相关修正也是在cc-p V5Z基组水平进行的.为了提高计算精度,利用基组外推将能量外推至完全基组极限处,得到外推的势能曲线.对这些势能曲线进行拟合,得到各种水平下四个电子态的光谱常数(T_e,R_e,ω_e,ω_ex_e,α_e和B_e),并详细分析了Davidson修正、相对论修正和核价相关修正及基组外推对光谱常数的影响.与其它理论结果和实验数据进行比较,可知本文的结果更精确、更完整.  相似文献   

6.
采用内收缩多参考组态相互作用(MRCI)方法结合相关一致基aug-cc-pV5Z计算了CP分子X2Σ+,A2Π和B2Σ+和CP-离子X1Σ+电子态的势能曲线.考虑了Davidson、相对论和核价相关修正对势能曲线的影响.本文的相对论修正是利用二阶Douglas-Kroll 哈密顿近似在cc-pV5Z基组水平进行的;同时核价相关修正也是在cc-pV5Z基组水平进行的.为了提高计算精度,将能量外推至完全基组极限处,得到外推的势能曲线.对这些势能曲线进行拟合,得到各种水平下四个电子态的光谱常数(Te,Re,ωe,ωexe,αe和Be),并详细分析了Davidson修正、相对论修正和核价相关修正及基组外推对光谱常数的影响.与其它理论结果和实验数据进行比较,可知本文的结果更精确、更完整.  相似文献   

7.
王杰敏  王希娟  陶亚萍 《物理学报》2015,64(24):243101-243101
采用内收缩多参考组态相互作用(MRCI)方法, 结合Dunning系列相关一致基, 分别对75As32S+75As34S+离子的X3Σ-和A1Π电子态的势能曲线进行了计算, 进一步拟合势能曲线, 得到各电子态的光谱常数与分子常数. 首先, 采用MRCI方法结合相关一致基, aug-cc-pV5Z, 对AsS+离子的X3Σ-和A1Π 电子态进行了计算, 获得相应的势能曲线; 然后, 为进一步提高势能曲线的精度, 对其进行了三种修正计算. 采用Davidson(+Q)方法修正MRCI 方法计算过程中存在的基组大小不一致缺陷; 利用二阶Douglas-Kroll哈密顿近似, 在cc-pVQZ基组水平, 修正了相对论效应对势能曲线的影响; 利用两点能量外推法, 在aug-cc-pVQZ和aug-cc-pV5Z基组水平对各能量点的势能值进行了外推, 得到完全基组极限处的势能曲线. 最后, 利用修正(包括Davidson修正、相对论修正和基组外推)后的势能曲线, 通过Vibrot程序, 求解双原子分子核运动的径向Schrödinger方程, 并进行同位素质量识别, 得到75As32S+75As34S+离子两个电子态的光谱常数(Te, Re, ωe, ωexe, αeBe)和分子常数(G(ϒ), Bv, Dv).  相似文献   

8.
王杰敏  孙金锋  施德恒  朱遵略  李文涛 《物理学报》2012,61(6):63104-063104
采用内收缩多参考组态相互作用(MRCI)方法和包含Davidson修正(+Q) 的MRCI方法结合相关一致基aug-cc-pV5Z研究了PH (X3Σ-, a1ΔA3)分子的势能曲线. 在同位素质量识别的基础上对势能曲线进行拟合, 得到PH, PD和PT分子各个电子态的光谱常数(Te, Re, ωe, ωexe, αeBe). 通过与已有实验数据的比较发现, 本文的结果与实验结果非常一致. 对于PH, PD和PT分子的Σ-电子态, 计算得到了J = 0时的前12个振动态. 对于每一个振动态, 还分别计算了它的振动能级、惯性转动常数和离心畸变常数. 与其他理论结果和实验数据进行比较可知, 本文的结果更精确、更完整. 文中PD和PT分子的光谱常数和分子常数均属首次报导.  相似文献   

9.
刘慧  邢伟  施德恒  孙金锋  朱遵略 《物理学报》2013,62(11):113101-113101
采用Davidson修正的内收缩多参考组态相互作用方法(MRCI+Q) 结合Dunning等的相关一致基aug-cc-pVnZ (n=D,T,Q,5,6) 计算了AlC分子X4-B4-态的势能曲线, 并利用总能量外推公式将这两个态的总能量分别外推至完全基组极限. 对势能曲线进行核价相关修正及相对论修正, 并详细讨论了基组、核价相关和相对论修正 等对X4-B4-电子态的能量和光谱常数的影响. 拟合核价相关及相对论效应修正的外推势能曲线, 得到了AlC分子X4-B4-电子态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Beαe. 它们与实验结果符合较好. 求解双原子分子核运动的径向Schrödinger方程, 找到了无转动的AlC分子两个电子态的全部振动态. 针对每一振动态, 还分别计算了其相应的振动能级和惯性转动常数等分子常数. 它们与已有的实验结果一致. 关键词: 光谱常数 分子常数 核价相关修正 相对论修正  相似文献   

10.
制备出确定旋轨态的OCS+(X2∏)离子,在260~325 nm波长范围内研究了OCS+经由B2+←X23/2(000)和B2+←X21/2(000,001)跃迁的分质量光解离谱.由光解离谱得到OCS+(B2+)电子态的光谱常数υ1(CS stretch)=828.9(810.4) cm-1,υ2(bend)=491.3 cm-1和υ3(CO stretch)=1887.2 cm-1.在B2+←X2∏跃迁谱中只能观察到B2+(010)←X21/2(000)跃迁的谱峰, 而观察不到B2+←X23/2(000)跃迁的谱峰. 用X2∏电子态的(000)21/2和(010)2+1/2电子振动能级之间的K耦合解释了这种B2+的υ2弯曲振动模的激发对X2∏电子态的旋轨分裂分量(Ω=1/2,3/2)的相关性  相似文献   

11.
The potential energy curves (PECs) of six low-lying electronic states (X1Σ+, a3Σ+, b3Π, A1Π, 13Σ and 15Σ+) of GeS molecule have been investigated employing the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach with large correlation-consistent basis sets for internuclear separations from 0.08 to 2.00 nm. The effects on the spectroscopic parameters by the core-valence correlation, relativistic and nonadiabatic corrections have been discussed in detail. The core-valence correlation correction is carried out at the aug-cc-pCVTZ basis set. The nonadiabatic correction is performed at the aug-cc-pVTZ basis set. And the relativistic correction is made at the level of cc-pV5Z basis set. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian (DKH2) approximation. To obtain more reliable PECs, the Davidson modification is also included in the present study. To reduce the incomplete basis set error, the PECs of these electronic states are extrapolated to the complete basis set (CBS) limit. With these PECs, the spectroscopic parameters of these low-lying electronic states are determined. On the one hand, analyses demonstrate that the effects on the spectroscopic parameters by the core-valence correlation correction, relativistic correction and Davidson modification are very obvious, whereas the effect on the spectroscopic parameters by the nonadiabatic correction is very small. On the other hand, comparison with the RKR data shows that the two-point total-energy extrapolation could improve the quality of spectroscopic parameters. On the whole, as expected, the most accurate spectroscopic parameters of GeS molecule are determined by the MRCI+Q/CV+DK+Q5 calculations.  相似文献   

12.
The potential energy curves (PECs) of the X3Σg, D3Πu, a1Δg, b1Πu, H′3Σu, K3Σu, 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states of the Si2 molecule are investigated using the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach with the correlation-consistent basis sets of Dunning and co-workers. The effects on the PECs by the core-valence correlation and relativistic corrections are included. The way to consider the relativistic correction is to use the third-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction is made with the aug-cc-pCV5Z basis set. And the relativistic correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs of all these electronic states are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. Using the PECs, the spectroscopic parameters are determined and compared with those reported in the literature. With these PECs determined by the MRCI+Q/CV+DK+56 calculations, the vibrational levels and inertial rotation constants of the first 20 vibrational states are evaluated and compared with the RKR data for these electronic states when the rotational quantum number J equals zero. On the whole, as expected, the most accurate spectroscopic parameters and molecular constants of the Si2 molecule are determined by the MRCI+Q/CV+DK+56 calculations. And the spectroscopic parameters of the 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states obtained by the MRCI+Q/CV+DK+56 calculations should be good prediction for future laboratory experiment.  相似文献   

13.
采用内收缩多参考组态相互作用方法和相关一致基aug-cc-pV6Z,对BF自由基X~1∑~+和a~3Π态的势能曲线进行了研究.计算是在0.095-133 nm的核间距内进行的.为获得更准确的结果,计算中还考虑了Davidson修正、相对论修正及核价相关修正对势能曲线的影响.相对论修正采用的方法是二阶DouglasKroll哈密顿近似,修正计算是在cc-pV5Z基组水平上进行的.核价相关修正使用的是cc-pCV5Z基组.利用得到的势能曲线,拟合出了各种修正下BF自由基X~1∑~+和a~3Ⅱ态的光谱常数De,Re,ωe,ωeχe,ωeye,Be和αe、并与实验结果进行了比较.结果表明:考虑Davidson修正、相对论修正和核价相关修正后得到的光谱常数最接近实验结果.利用修正后的势能曲线,通过求解径向振转Schr6dinger方程,找到了转动量子数J=0时这两个电子态的全部振动态,并计算了每一电子态前20个振动态的振动能级、惯性转动常数和离心畸变常数,其值与已有的实验结果较为一致.本文得到的光谱常数和分子常数达到了很高的精度,能为进一步的光谱实验提供可靠的参考.  相似文献   

14.
The potential energy curves (PECs) of eight low-lying electronic states (X2Σ+, A2Π, B2Σ+, a4Σ+, D2Π, E2Σ+, 12Σ and F2Δ) of the CN radical have been studied using the ab initio quantum chemical method. The calculations have been performed using the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the correlation-consistent basis sets of Dunning and co-workers. The effects on the PECs by the core-valence correlation and relativistic corrections are taken into account. The way to consider the relativistic correction is to use the second-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction calculations are performed with the cc-pCVQZ basis set. The relativistic correction is carried out at the level of cc-pV5Z basis set. In order to obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs are extrapolated to the complete basis set (CBS) limit by the total-energy extrapolation scheme. With these PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeуe, Be, αe and γe) are determined and compared with those reported in the literature. Finally, with the PECs obtained by the MRCI+Q/CV+DK+Q5 calculations, the complete vibrational states are computed for the eight electronic states by solving the ro-vibrational Schrödinger equation for the non-rotating radical, and the vibrational levels and inertial rotation and centrifugal distortion constants of the first 11 vibrational states are reported, which agree favorably with the available experimental data. The spectroscopic parameters of 12Σ and F2Δ electronic states obtained by the MRCI+Q/CV+DK+Q5 calculations should be good predictions for future laboratory experiments.  相似文献   

15.
The potential energy curves (PECs) of six low-lying electronic states (X1Σ+, a3Π, a3Σ+, d3Δ, e3Σ and A1Π) of CS molecule have been investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach with large correlation-consistent basis sets. Effects on the PECs by the core-valence correlation and relativistic corrections have been taken into account. And the two corrections are performed at the level of cc-pV5Z basis set. The way to consider the relativistic corrections is to use the second-order Douglas-Kroll Hamiltonian approximation. Using the CCSD(T), MRCI and MRCI with the Davidson modification (MRCI + Q), the PECs of electronic states involved are extrapolated to the complete basis set (CBS) limit. With the PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, αe, βe, γe and Be) of the six low-lying electronic states are determined. These parameters are in excellent agreement with the experimental data. The complete vibrational states are computed for the six low-lying electronic states when the rotational quantum number J equals zero, and the inertial rotation constants of the first 23 vibrational states are reported, which agree favorably with the RKR data. Comparison with the measurements shows that the two-point total-energy extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.  相似文献   

16.
Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ? and 33Σ? electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ? possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov’s method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ?, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号